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Supervisor’s Foreword

Raphaëlle Haywood’s thesis develops powerful new methods for detecting reflex
orbital motions of solar-type stars hosting extra-solar planets, in the presence of
stellar magnetic activity.

During the first two decades of exoplanet research, the sensitivity of
radial-velocity spectrometers improved exponentially, at the rate of one order
of magnitude per decade. After 2011, however, the detection threshold stalled at
orbital velocity amplitudes close to 1 m s−2. Although the new generation of
high-accuracy radial-velocity spectrometers is capable of detecting velocity shifts
an order of magnitude smaller than this, the photospheric physics of the host stars
themselves is now the limiting factor.

High-resolution images of our nearest star, the Sun, show that its surface churns
with convective flows on a wide range of length scales. The solar granulation in
particular is suppressed in the regions of high magnetic field strength that surround
sunspot groups and make up the wider solar magnetic network. As the Sun rotates,
sunspots and active regions pass in and out of view, modulating the Sun’s apparent
radial velocity by several m s−2. Space-borne observations of other Sun-like stars
show similar patterns of modulation in brightness, which are closely related to the
velocity variations that plague efforts to determine the masses of their small planets.

The need to overcome this barrier has become more acute since the advent of
space-based photometry missions such as CoRoT and Kepler, which have detected
the transits of planets down to the size of the Earth and even smaller. To have any
hope of distinguishing rocky Earth analogues from mini-Neptunes with low-density
ice mantles, their masses must be found by measuring the orbital reflex motions
of their host stars and disentangling them from the higher amplitude stellar activity
signal.

Using the High-Accuracy Radial-velocity Planet Searcher (HARPS) on the
European Southern Observatory’s 3.6-m telescope at La Silla, Raphaëlle Haywood
conducted observations of the compact planetary system orbiting the magnetically
active star CoRoT-7, simultaneously with photometry from the CoRoT spacecraft.
Her analysis of these data sets demonstrates that the radial-velocity variations arise
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mainly from suppression of photospheric convection by magnetic fields. A key
result of Haywood’s work on CoRoT-7 was the recognition that while stellar active
regions come and go, a true planetary signal remains constant in phase and
amplitude. Her work provides the first practical demonstration that Gaussian pro-
cess regression is adept at teasing them apart, given a sufficiently long and
well-sampled data train.

Haywood’s second major achievement was to carry out the first systematic
campaign of radial-velocity observations of the Sun using the HARPS instrument,
using integrated sunlight scattered from the surface of a bright asteroid. She used
data from the Solar Dynamics Observatory to identify the types of solar surface
activity that drive the full-disc velocity variations. She demonstrated that the sup-
pression of convective blueshift in solar active regions, and the velocity modulation
caused by dark spots and bright faculae rotating across the face of the Sun, was
directly measurable from the SDO images. She found them to be an excellent
predictor of the Sun-as-a-star radial-velocity fluctuations measured over two solar
rotations with the HARPS instrument.

The clarity of Haywood’s writing makes her thesis popular with researchers in
the field seeking to master and adopt the state-of-the-art statistical methods that she
employed. These include Gaussian-process regression for modelling the correlated
signals arising from evolving active regions on a rotating star and Bayesian model
selection methods for distinguishing genuine planetary reflex motion from false
positives arising from stellar magnetic activity.

Her study represents a significant step towards measuring the masses of
potentially habitable planets orbiting Sun-like stars with solar-like magnetic
activity. The techniques she developed are influential in the design of new
observing strategies that allow intrinsic stellar variability to be fully characterised
and separated from planetary motion, using the data analysis methods described in
the thesis. Although the first mass measurement of a true Earth analogue orbiting
in the habitable zone of a Sun-like star is still some way off, the methods pioneered
in this thesis represent an influential milestone along the journey.

St Andrews, UK Prof. Andrew Collier Cameron
February 2016
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Preface

Since the discovery of the first planet orbiting another star than our Sun, just over
twenty years ago, hundreds of new extra-solar planets have been identified, and
thousands of more discoveries are awaiting confirmation. The first exoplanets that
were detected had sizes similar to those of Jupiter and Saturn, the giants in our solar
system. In recent years, instrument precision and telescope power have improved so
much that discovering and characterising planets as small as the Earth is now a
reality. The search for worlds similar to our own is one of the fastest growing fields
in astronomy; it is a young and exciting field and captivates the interest of the
public like no other.

One of the most successful ways to find extra-solar planets is to look for stars
that wobble. As a planet orbits around its parent star, it exerts a tiny pull on the star.
This causes the starlight to periodically stretch and compress, making the star
appear redder and bluer. This effect, known as the Doppler shift, is the same effect
that makes the siren of an ambulance sound high-pitched then low-pitched as it
drives past. These minuscule changes in the colour of the star’s light, which reflect
the variations of the star's velocity along our line of sight, can be detected by current
state-of-the-art spectrographs.

There are still several challenges to be overcome in the quest for other Earths.
One major difficulty arises from the intrinsic magnetic activity of the host stars
themselves. Indeed, the correlated noise that arises from their natural radial-velocity
variability can easily mimic or conceal the orbital signals of super-Earth and
Earth-mass exoplanets, and there is currently no reliable method to untangle the
signal of a planet from this stellar “noise”.

The work I undertook as part of my thesis was intended to tackle this issue via a
twofold approach. First, I developed an intuitive and robust data analysis frame-
work in which the activity-induced variations are modelled with a Gaussian process
that has the frequency structure of the photometric variations of the star, thus
allowing me to determine precise and reliable planetary masses (Chap. 2); and
second, I explored the physical origin of stellar-induced Doppler variations through
the study of our best-known star, the Sun (Chap. 4).
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I applied my new data-modelling technique to three recently discovered planetary
systems: CoRoT-7, Kepler-78, and Kepler-10 (Chap. 3). I determined the masses
of the transiting super-Earth CoRoT-7b and the small Neptune CoRoT-7c to be
4:73� 0:95M� and 13:56� 1:08M�, respectively. The density of CoRoT-7b is
6:61� 1:72 g cm−3, which is compatible with a rocky composition. I carried out
Bayesian model comparison to assess the nature of a previously identified signal at 9
days and found that it is best interpreted as stellar activity. Despite the high levels of
activity of its host star, I determined the mass of the Earth-sized planet Kepler-78b to
be 1:76� 0:18M�. With a density of 6:2þ 1:8

�1:4 g cm−3, it is also a rocky planet.
I found the masses of Kepler-10b and Kepler-10c to be 3:31� 0:32M�
and 16:25� 3:66M�, respectively. Their densities, of 6:4þ 1:1

�0:7 g cm−3 and
8:1� 1:8 g cm−3, imply that they are both of rocky composition—even the 2
Earth-radius planet Kepler-10c!

In parallel, I deepened our understanding of the physical origin of stellar
radial-velocity variability through the study of the Sun, which is the only star whose
surface can be imaged at high resolution. I found that the full-disc magnetic flux is
an excellent proxy for activity-induced radial-velocity variations; this result may
become key to breaking the activity barrier in coming years.

I also found that in the case of CoRoT-7, the suppression of convective blueshift
leads to radial-velocity variations with an RMS of 1.82 m s−1, while the modulation
induced by the presence of dark spots on the rotating stellar disc has an RMS of
0.46 m s−1. For the Sun, I found these contributions to be 2.22 m s−1 and
0.14 m s−1, respectively. These results suggest that for slowly rotating stars, the
suppression of convective blueshift is the dominant contributor to the
activity-modulated radial-velocity signal, rather than the rotational Doppler shift
of the flux blocked by starspots.

Gaining a deeper understanding of the physics at the heart of activity-driven RV
variability will ultimately enable us to better model and remove this contribution
from RV observations, thus revealing the planetary signals.

Cambridge, MA, USA Dr. Raphaëlle D. Haywood
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Chapter 1
Introduction: The Hunt for Extra-Solar
Planets

In future, children won’t perceive the stars as mere twinkling
points of light: they’ll learn that each is a ‘Sun’, orbited by
planets fully as interesting as those in our Solar system.

Sir Martin Rees, 2003

Since the dawnof civilisationwehave looked up to the stars,wonderingwhether other
worlds exist and what they might look like. In the last few decades, developments
in instrumentation and observation techniques have led to revolutionary discoveries:
we now know that planets revolving around other stars than our Sun exist, and better
still, they appear to be very common.

Early searches In the 1940s, a few independent exoplanet discovery claims were
made (Strand 1943; Reuyl and Holmberg 1943), based on perturbations in the astro-
metric motions of their host stars. There was also a flurry of interest in astrometric
detection in the late 1960s, when van de Kamp (1969) claimed the detection of two
planets orbiting Barnard’s star. Although these findings were soon proved wrong,
they sparked new appeal in the astronomy community at the time. The idea that we
might be able to detect the radial motion of a star induced by the gravitational tug
of orbiting planets was proposed by Struve (1952), and several radial-velocity (RV)
monitoring surveys were initiated, including those of Campbell and Walker (1985),
Latham et al. (1989) and Marcy and Butler (1994). This technique has proved very
successful at detecting and confirming exoplanets since then, and has yielded some
of the most exciting results in this new field of astronomy.

Wolszczan and Frail (1992) reported on the first detection of two Earth-mass
planets orbiting a pulsar, based on variations in the timing of its pulses. In 1995,
Mayor and Queloz (1995) announced the discovery of 51 Peg b, the first planet-mass
companion of a Sun-like star. It was found through RV observations taken with the
ELODIE spectrograph (Baranne et al. 1996), mounted on the 1.93-m telescope at
the Observatoire de Haute-Provence (France). 51 Peg b has half the mass of Jupiter,
but orbits its host star once every 4 days: it is much closer to its star than Mercury,
which orbits the Sun every 88 days.

© Springer International Publishing Switzerland 2016
R.D. Haywood, Radial-velocity Searches for Planets Around Active Stars,
Springer Theses, DOI 10.1007/978-3-319-41273-3_1
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2 1 Introduction: The Hunt for Extra-Solar Planets

Fig. 1.1 Yesterday’s discoveries and today’s challenges: RV variations of WASP-8, host to a hot-
Jupiter in an 8-day orbit recorded with CORALIE and HARPS (Queloz et al. 2010) (blue), and
HARPS RV variations of CoRoT-7, an active star host to a super-Earth in an 0.85-day orbit and a
small Neptune at 3.65 days (Haywood et al. 2014) (red). The horizontal and vertical scales are the
same for both RV curves

An army of planet-hunting spectrographs was formed including SOPHIE, to replace
ELODIE on the 1.93m (Perruchot et al. 2008) and HARPS (High Accuracy Radial-
Velocity Planet Searcher,Mayor et al. 2003), commissioned in 2003 on the 3.6m tele-
scope at La Silla, Chile. The first planet-hunting spectrographs, including ELODIE,
HIRES,mounted onKeck I atMaunaKea observatory, Hawaii (Vogt et al. 1994), and
CORALIE, mounted on the Euler telescope at La Silla, Chile (Queloz et al. 2000)
had an RV precision of about 15m · s−1 (see Perryman 2011, p. 24. for a complete list
of planet-hunting spectrographs). Over the years, improved calibration techniques
(see Mayor et al. 2014; Pepe et al. 2014a and references therein) have pushed the
RV sensitivity down by an order of magnitude. HARPS is able to detect RV signals
with amplitudes as low as 1m · s−1 (Queloz et al. 2001b), and has paved the way
towards the discovery of Neptune- and super-Earth-mass planets through new blind
RV planet surveys (see Fig. 1.1).

From RV monitoring to planet detection The radial velocity of a star is defined
as “the component of its motion along the line of sight of the observer” (Murdin
2002). The presence of a planet exerts a gravitational pull on the star that causes it to
wobble by tiny amounts around their common centre of mass, as shown in Fig. 1.2a.
The light we receive from the star is slightly blueshifted or redshifted as the star gets
pulled towards or away from us (Fig. 1.2b).

As it reaches the observer, light with a wavelength λobs has undergone a rela-
tivistic Doppler shift relative to when it was initially emitted by the star as λrest (the
wavelength of a spectral line in a rest frame). Each line is thus shifted by an amount:

�λ = λobs − λrest. (1.1)

It is possible to show that the radial component of the velocity of the star is propor-
tional to this wavelength shift:

vradial ≈ �λ

λrest
c, (1.2)
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Fig. 1.2 The radial-velocity method: as a planet orbits its host star, the star wobbles around their
common centre of mass (panel a). As a result, the starlight is Doppler shifted (panel b)

where c is the speed of light (refer to Perryman (2011, p. 16), and references therein
for the full derivation of this equation).

Monitoring the RV of a star in time allows us to detect any variations induced by
the orbit of a planet. A few examples of existing and hypothetical planets and their
expected RV semi-amplitudes are listed in Table1.1.

The mass m of the planet can be derived from the semi-amplitude K and period
P of the signal, if we know the stellar mass M�. The mass function f (m) is given
by:

f (m) = m3 sin i

(M� + m)2
= K 3 P

2πG
(1 − e2)3/2, (1.3)

where i is the planet’s orbital inclination and G is the gravitational constant (the full
derivation of this equation can be found in Perryman 2011 or Hilditch 2001).

Ground-based photometric surveys The surprising discovery of 51 Peg b was
soon followed by others, through photometric surveys such as the Hungarian
Automated Telescope Network, operational since 2001 (HATNet, Bakos et al. 2004),

Table 1.1 Approximate RV semi-amplitudes expected from some of the planets of our solar system
at a range of distances (values obtained from theWikipedia page “Doppler spectroscopy”, in March
2015)

Planet mass Distance to star (au) Orbital period K (m · s−1)

Jupiter (317 M⊕) 5 5 years 12

Jupiter 1 1 year 28

Neptune (17 M⊕) 0.1 36 days 5

Super-Earth (5 M⊕) 0.1 36 days 1.4

Earth 1 1 year 0.09
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Fig. 1.3 Transit of
WASP-10b: the planet casts
its shadow upon the stellar
disc when it passes in front
of it, thereby reducing the
total brightness observed.
Image credit: John Johnson

and theWide-Angle Search for Planets initiated in 2004 (WASP, Pollacco et al. 2006;
Cameron et al. 2009). These arrays of small robotic telescopesmonitor the brightness
variations of hundreds of thousands of stars at a time, looking for tiny, periodic dips
of less than 1% in the star’s light, which may be caused by a planet crossing the disc
of its host star. Together, WASP and HATNet have found over 200 transiting planets
as of March 2015.

One of the most common ways to detect extra-solar planets is to look for the
periodic dimming of the host star as a planet passes in front of it relative to the
observer, as illustrated in Fig. 1.3. Transit events are very unlikely as they require
the observer, planet and host star to be very well aligned. If the radius of the star
and the orbital eccentricity are known, then the radius of the planet can be inferred
(see Seager and Mallen Ornelas 2003). If our planetary system contains one or more
transiting planets we can assume i approximately equal to 90◦. This is usually a
reasonable assumption for all the planets in a compact system since over 85% of
observed compact planetary systems containing transiting super-Earths andNeptunes
are thought to be coplanar within 3◦ (Lissauer et al. 2011b).

Combining transit andRVobservations together yields a complete set of planetary
and orbital parameters. The bulk density of the planet can then be inferred from its
mass and radius, allowing us to take a first guess at its structure and composition.

The space revolution After the turn of the century, several photometric satellites
were launched into space to look for transits of small super-Earth- and Earth-size
planets without the disruptive twinkling induced by the Earth’s atmosphere. The
European CoRoT1 satellite (Baglin and Team 1998; Auvergne et al. 2009), launched
at the end of 2006 was the first space mission dedicated, in part, to the detection of

1COnvection, ROtation et Transits planétaires.
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exoplanets. It discovered 32 validated planets to date (see a recent review by Hatzes
2014), most of them giant gas planets, but also several small rocky planets, including
CoRoT-7b, the first transiting rocky planet ever discovered (Léger et al. 2009).

In addition to finding transiting exoplanets, the CoRoT satellite, together with the
Canadian space mission MOST2 (Matthews et al. 2000) launched in 2003 and the
Kepler mission (launched in 2009) sparked huge advances in the field of asteroseis-
mology. Sun-like stars constantly pulsate due to the numerous acoustic oscillations
bouncing within their interiors; by monitoring the amplitude and frequency structure
of the flickering induced by these oscillations, we can probe stellar interiors and
characterise stars with unprecedented accuracy and precision (see Campante 2015,
Chaplin et al. 2014 and Kjeldsen et al. 2010 among others). In particular, astero-
seismology provides very accurate and precise measurements of radii and masses of
stars, which are essential to characterise extra-solar planets (see Campante 2015 and
references therein).

In addition to these missions, the Gaia spacecraft was launched at the end of
2013 by ESA. It will measure fundamental parameters (including distance, radius
and effective temperature) of about 1 billion stars, which amounts to 1% of the stars
in our Galaxy (Lindegren 2009). It is expected to detect 5000 transiting exoplanets
via photometric monitoring as well as a further 2000 exoplanets via astrometric
measurements, which should allow it to detect every Jupiter-mass planet with orbital
periods between 1.5 and 9 years (de Bruijne 2012; Sozzetti 2011).

TheKepler spacemission funded byNASA (Borucki et al. 2011;Koch et al. 2010)
prompted an explosion in exoplanet discoveries: as ofMarch 2015, over 1000 planets
have been confirmed, and another 4200 candidates are awaiting further investigation.
Because of their sheer number and that many of them are too faint for ground-based
telescopes,Kepler candidates cannot all be confirmed via RV follow-up observations
or transit timing variations induced by gravitational interactions between planets in
multiple systems. Instead, a large number of candidates are now elevated to planet
status via statistical validation (Rowe et al. 2014; Lissauer et al. 2014b; Torres et al.
2011). In this procedure, the likelihood of a planet nature is weighted against other
possible phenomena such as a grazing eclipsing stellar binary, blend with a back-
ground binary system, instrumental effects, etc.

Among its most notable discoveries, Kepler’s first Earth-size rocky planet was
Kepler-10b (Batalha et al. 2011); a rocky Neptune-mass companion Kepler-10c was
confirmed soon after (Fressin et al. 2011). I determine the masses of both planets
using HARPS-N RV data in Chap.4. The first system characterised via transit timing
variationswasKepler-9, a system of two giants (Holman et al. 2010); see alsoKepler-
36, a curious system because its two transiting planets have very different densities
(Carter et al. 2012). Kepler-11 was found to host 6 small transiting planets, 5 of
which have orbital periods between 10 and 47 days (Lissauer et al. 2011a, 2013);
this was the first of many multiple compact systems. Kepler also found several
circumbinary planets, including Kepler-16b (Doyle et al. 2011), Kepler-47b and c
(Orosz et al. 2012b) and the Neptune-size Kepler-38b (Orosz et al. 2012a). The

2Microvariability and Oscillations of STars.

http://dx.doi.org/10.1007/978-3-319-41273-3_4
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first planet discovered with the same radius and mass as the Earth was Kepler-78b
(Sanchis-Ojeda et al. 2013); with an orbital period of just 8.5h, it is sure to be a
hellish world! I re-determine its mass using HARPS-N and HIRES observations in
Chap.4. Kepler-186f, was the first validated Earth-size planet to lie in the habitable
zone of an M dwarf, where liquid water can be sustained (it is believed to be a key
element for the emergence and survival of carbon-based life) (Quintana et al. 2014).
The Kepler mission uncovered a great diversity of planets, which are giving us a
unique insight on planet occurrence rates (see recent statistical studies by Howard
et al. 2010;Mayor et al. 2011; Fressin et al. 2013; Petigura et al. 2013 and others) and
shaping our theories of planet formation (see Lissauer et al. 2014a and references
therein).

The initial aim of the Kepler mission was to find and characterise “Earth twins”,
i.e. rocky planets orbiting Sun-like stars in the habitable zone. Achieving this goal
has beenmore difficult than anticipated, however, mainly because the intrinsic photo-
metric variability of stars due to oscillations, granulation, spots, flares, etc. had been
underestimated. Since the failure of two of its reaction wheels in May 2013, Kepler
has been recycled into K2, which points to fields near the ecliptic plane for about 80
days at a time (Haas et al. 2014). Its photometric performance is still excellent, and
it is already discovering transiting planets (Barclay 2014).

RV follow-up of Kepler candidates and future instruments In order to confirm the
brightest and most exciting Kepler candidates, a replica of HARPS for the Northern
hemisphere was designed as theKepler field is not visible from the South. HARPS-N
is mounted on the 3.57m Telescopio Nazionale Galileo (TNG) at La Palma, Spain
(Pepe 2010; Cosentino et al. 2012). It has now been in operation for three years and
routinely achieves a precision better than 1m · s−1.HARPS-Nhas already enabled the
characterisation of several Kepler systems, including Kepler-78 (Pepe et al. 2013),
Kepler-10 (Dumusque et al. 2014), two close-in giant planet hosts KOI-200 and 889
(Hébrard et al. 2014) and a close-in super-Earth host Kepler-93 (Dressing et al. 2015).

Several other high-precision spectrographs are currently being commissioned (see
Pepe et al. 2014a and references therein). Minerva (Hogstrom et al. 2013) is due to
start operations this year and will contribute to the follow-up of transiting planets
found byK2 andTESS, theTransitingExoplanet SurveySatellite (Ricker et al. 2015),
to be launched in 2017. In the same year, CHEOPS (CHaracterising ExOPlanets
Satellite, (Fortier et al. 2014) will be sent out to determine the radii of planets found
in currentRV surveys and formore precise photometric follow-up of targets identified
by K2 and TESS.

A new generation of near-infrared spectrographs is also emerging, with
CARMENES (Quirrenbach et al. 2013), which is expected to begin work this year,
and SPiROU (Delfosse et al. 2013), scheduled for 2017. These spectrographs will be
ideally suited to look for planets in the habitable zones of M dwarfs, which are more
luminous in the infrared than in the visible. The effects of stellar activity, which are
a major obstacle in RV searches, are less marked in this region of the spectrum.

The ESPRESSO spectrograph, to be mounted on the 8-m VLT at Paranal
Observatory, Chile in 2016 is expected to achieve a precision of 0.1 m · s−1 (Pepe

http://dx.doi.org/10.1007/978-3-319-41273-3_4
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et al. 2014b). PLATO (Rauer et al. 2014), a photometry mission planned for launch
in 2024, is a wide-field instrument like WASP, which will enable the discovery of
Earth-radius planets in the habitable zones of their host stars. It will target bright
stars, enabling much more precise determination of the planetary masses – if we can
overcome the challenges imposed by stellar activity (see later paragraph). PLATO
will perform asteroseismology on the host stars, enabling accurate determination of
stellar parameters and ages. It will also allow us to explore the architecture of plan-
etary systems as a whole, which will provide unique insights on planet formation.

High-precision RVmeasurements The key to measuring the RV of a star with high
precision is to obtain a spectrum with as many lines as possible. High-resolution
spectrographs are fitted with a grating, which splits the light into many wavelength
orders, with the same resolution at all wavelengths; each order is then cross-dispersed
by a grism in order to separate the different spectral orders spatially. The resultant
spectrum is projected onto a high quality square CCD unit, as pictured in Fig. 1.4.
Such a spectrum contains thousands of absorption spectral lines. We can create “line
masks” of the strongest lines expected in the spectrum of a given star (eg. F, G, K)
based on wavelength atlases of line positions measured in laboratory experiments,

Fig. 1.4 (Pre-) first light spectrum obtained byHARPS-N. The horizontal bands are thewavelength
orders split by a grating, each of which is then split by a grism. This setup produces thousands of
spectral lines, fromwhich a preciseRVmeasurement can be extracted. Picture captured byFrancesco
Pepe with a DSLR camera
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and assuming the profile of the lines (e.g., Gaussian).We cross-correlate our observed
spectrumwith a line mask in order to determine the wavelength shift and mean shape
of each line. From this procedure, we can create a “mean” line known as the cross-
correlation function (CCF). It is centred at λobs and its shape is a combination of
all the lines in the spectrum; the more lines we have, the better defined the CCF.
The cross-correlation technique is commonly used in spectroscopic data reduction
pipelines (eg. for HARPS and HARPS-N, see Baranne et al. 1996 and Lovis and
Pepe 2007).

HARPS-N is a twin of HARPS, its most notable differences being that it is fed by
an octagonal fibre, which scrambles the lightmore effectively. It also uses a Thorium-
Argon lamp for thewavelength calibration, but experiments are being carried outwith
a laser comb which is currently being used to map the locations of the individual
pixels on the CCD, to combat systematic errors caused by irregular pixel sizes.
The RV uncertainty due to photon noise on HARPS and HARPS-N measurements
can be reduced down to 0.5 m · s−1 with appropriate exposure times. The level of
instrumental noise, arising mostly from wavelength calibration, is now of the order
of a fraction of a m · s−1 (Mayor and Udry 2008; Dumusque et al. 2010).

Further descriptions of telescope and spectrograph setups as well as wavelength
calibrationmethods (iodine cell, Thorium-Argon lamp, laser frequency comb), along
with references for further information are given by Perryman (2011, pp. 16–21).

This thesis: towards breaking the stellar activity barrier We have now reached
a level of precision where the most significant source of noise comes from the star
itself. Observations have shown that activity-induced RV variations are of the order
of 0.5m · s−1 for a quiet dwarf star (Makarov et al. 2009); they can reach tens of
m · s−1 in active stars, and in some cases up to 50m · s−1 (Saar and Donahue 1997).
In comparison, a super-Earth orbiting a Sun-like star at 0.1 au induces a signal with
an amplitude of just 1.4m · s−1. A habitable Earth-mass planet has an RV signature
of under 10cm · s−1 (see Table1.1). Activity-induced signals can therefore conceal
and even mimic planetary orbits in RV surveys, and this has resulted in several false
detections (Queloz et al. 2001a; Bonfils et al. 2007; Huélamo et al. 2008; Boisse et al.
2009, 2011; Gregory 2011; Haywood et al. 2014; Santos et al. 2014; Robertson et al.
2014 and others). I review the magnetic activity processes and features responsible
for RV variability in Chap. 2.

To this day, various activity decorrelation methods have been tested (including
the methods of Queloz et al. 2009; Hatzes et al. 2011; Aigrain et al. 2012; Haywood
et al. 2014) but no simple and all-inclusive recipe has yet been proposed. During my
thesis, I developed a new analysis technique to account for activity-induced signals
in RV searches using Gaussian processes. I present my method in Chap.3, and apply
it to RV observations of CoRoT-7, Kepler-78 and Kepler-10 in Chap.4.

Understanding the effects of stellar activity on RV observations is crucial to
develop the next generation of more sophisticated activity models, and further
improve our ability to detect and characterise low-mass planets. In Chap.5, I explore
the physical origin of stellar RV variability and identify a new activity proxy through

http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_3
http://dx.doi.org/10.1007/978-3-319-41273-3_4
http://dx.doi.org/10.1007/978-3-319-41273-3_5
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the study of the Sun. It is the only star whose surface can be directly resolved at high
resolution, and therefore constitutes an excellent test case.
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Chapter 2
Stellar Activity as a Source of Radial-Velocity
Variability

The key to breaking the activity barrier in exoplanet detections lies in our under-
standing of the physical origin and temporal structure of stellar RV variability. This
chapter provides a review of the manifestations of magnetic activity, their impact on
photometric and spectroscopic observations, and the analysis techniques that have
been developed in recent years to account for activity-induced RV signals. I also
present the target selection criteria I proposed to pick “magnetically manageable”
stars for HARPS-N RV follow-up.

The signatures of magnetic activity span a wide range of spatial and temporal
scales. We tend to naturally think of things in terms of their physical sizes. But when
it comes to looking at stars, we see them as minuscule point-like objects in the night
sky, and it is impossible to observe their surfaces with high resolution (except for
the Sun). We can thus only gather limited information about spatial structures on the
stellar surfaces.

The time-dependent nature of observations allows us to watch the surfaces of
stars change and evolve over time and thus form a detailed picture of the various
time scales at play. The temporal structure of the signals we observe can tell us a
lot about the stars they originate from. In the first part of this chapter, I will present
each stellar activity timescale, starting from acoustic oscillations that evolve within
minutes, up to magnetic cycles that last decades.

2.1 Magnetic Activity and Its Manifestations

Before we look at the temporal and spatial diversity of magnetic activity signatures,
however, let us catch a glimpse at how magnetic fields are produced within stars.
It has long been found that a dynamo process operates within the stellar interior
(Babcock 1961; Parker 1963, see Tobias 2002 and references therein). Over recent
years, helioseismic studies and sophisticated numerical models have taught us much
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about the Sun’s internal dynamics, although much debate remains (see review by
Charbonneau 2010). Current theories of solar dynamo processes are detailed in
Choudhuri (2007).

The Sun, like all stars, generates energy in its core through the process of nuclear
fusion. This energy is carried outwards in the form of radiation through the radiative
zone, where photons undergo a random walk which takes about 10 million years
(Lockwood 2005). The radiative zone constitutes the majority of the Sun’s interior.
Above it lies a convective zone which takes up around 30% of the interior (in radius).
In less massive stars, the radiative layer is thinner or may not be present at all—for
stars withmasses less than 0.35M� (corresponding to earlyM spectral type), convec-
tion is the dominant mechanism for energy transport throughout the star (Hansen and
Kawaler 1994; Chabrier and Baraffe 1997). Hot fluid cells are driven upwards due
to buoyancy forces. The cells cool when they reach the stellar surface and eventually
sink back, and so on.

In Sun-like stars, the radiative and convective layers are separated from each
other by a thin layer called the tachocline (Spiegel and Zahn 1992; Miesch 2005).
In this region, strong radial shearing forces arise due to the transition between the
uniformly rotating radiative zone and the differentially rotating convection zone. It is
now generally accepted that this shear is the source of the stellar magnetic dynamo,
which is responsible for stellar activity (Tobias 2002). Fully convective stars, inwhich
there is no tachocline, have a different type of dynamo which can result in both basic
magnetic field topologies (Morin et al. 2008) or very complex ones (Chabrier and
Küker 2006). Fully radiative stars have very weak and unordered fields, if any, and
it is unclear how they are created (see Walder et al. 2012 and references therein).
A small subset, however, such as the chemically peculiar A stars, have very strong
magnetic fields, but these appear to be fossil fields rather than dynamo-generated.
Their configurations do not change with time (see Aurière et al. 2014 and references
therein).

Light escapes from stars in the bottom layer of the stellar atmosphere: the pho-
tosphere. Above the photosphere lies the chromosphere, which is surrounded by the
corona, which extends out into space through the solar wind. The photosphere is
commonly regarded as the stellar surface and is peppered with granulation, spots
and faculae: these are some of the signatures of stellar magnetic activity.

Useful textbooks and reviews on the topics covered in this chapter include Rut-
ten and Schrijver (1994)—proceedings of Solar Surface Magnetism,1 Schrijver and
Zwaan (2000)—a book on solar and stellar magnetic activity, Hall (2008)—a review
on chromospheric activity, and Reiners (2012)—a review on observations of mag-
netic fields in Sun-like stars. A great place to find general reviews and articles on
solar and stellar activity is the Living Reviews in Solar Physics.2 For more general
information on stellar interiors and atmospheres, two classic textbooks are Novotny

1NATO Advanced Research Workshop, held in the Netherlands in 1993.
2Published by the Max-Planck-Institut für Sonnensystemforschung, Germany. Available online at:
http://solarphysics.livingreviews.org/.

http://solarphysics.livingreviews.org/
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(1971) and Gray (1992). I also provide more specific references throughout this
chapter.

2.1.1 Minutes: Oscillations

Stars breathe. Their internal pressure constantly fluctuates by tiny amounts; this cre-
ates acoustic waves going through the star’s interior, which result in the formation of
ripples on the stellar surface. These waves were first observed on the Sun by Leighton
et al. (1962); later on, Bedding et al. (2001) reported on the first clear detection of
similar oscillations in a star other than the Sun, α Cen A. These oscillations, com-
monly known as p-modes, repeat on timescales of about 5–15min and produce RV
oscillations with an amplitude of a few m · s−1.

To illustrate this, I retrieved RV observations of the bright Sun-like star μ Arae,
taken at a 2-min cadence over an 8-night run for an asteroseismic study (Bouchy et al.
2005). The RV variations recorded on one of the nights are plotted in Fig. 2.1. The
p-mode oscillations are clearly visible, particularly in panel (c), which shows a close-
up on an oscillation with a period of about 8min. We can confirm the presence of
this signal by looking at the Lomb–Scargle periodogram (Lomb 1976; Scargle 1982;
Zechmeister and Kürster 2009; see Sect. 2.3.2.1) of the dataset, displayed in Fig. 2.2.
We also see other peaks at 5 and 11min, which arise from p-mode oscillations that
have a slightly different frequency.

We can average out the RV effects of these short frequency oscillations simply
by making sure our observations are at least 10min long (Dumusque et al. 2010).
It is common practice with HARPS and HARPS-N to make 15-min observations in
order to cancel their effect.

Fig. 2.1 RV observations of the bright star μ Arae (also known as HD 160691, V = 5.1 mag),
monitored at high-cadence (100-s exposures with 31-s of dead time in between) as part of an 8-
night HARPS run in June 2004 (ESO program 073.D-0578, Bouchy et al. 2005). Panel a shows
observations made over one night. Panel b is a zoom-in over a 2h period, and panel c is a zoom-in
over 10min. Panel a clearly shows the 2-h granulation signal, while panels b and c highlight the
p-modes



16 2 Stellar Activity as a Source of Radial-Velocity Variability

Fig. 2.2 Lomb–Scargle periodogram of the RVs of μ Arae plotted in Fig. 2.1. The strong peaks
close to 4 and 8min are caused by the p-modes, while the peak at about 2h is due to granulation
motions

2.1.2 Minutes: Flares and Coronal Mass Ejections

The magnetic energy stored in active regions and their surroundings can lead to
sudden releases in the form of large eruptions known as flares or coronal mass
ejections (see Hathaway 2010 and references therein). These events lead to sudden
and sharp increases of brightness, and have been observed on other Sun-like stars in
Kepler lightcurves (see Walkowicz et al. 2011 and others).

These dramatic events are rare in the sort of low-activity stars suitable for planetary
RV searches, and easily identified in RV observations as they will generate spikes of
several tens of m · s−1 in the mean RV variations of a star, and show strong signatures
in the Hα emission profile (Reiners 2009).

2.1.3 Minutes to Hours: Granulation

A small patch of the Sun’s surface is pictured in Fig. 2.3, revealing the bright and
dark granulation structures in impressive detail. This pattern originates from the
convective motions taking place below the surface: hot fluid cells rise up to the
surface, forming large and bright patches, which sink once they have cooled and
become dense enough for gravity to pull them back down.

Granules have a diameter of a few hundred kilometres, and a lifetime of the order
of about 8min (Bahng and Schwarzschild 1961; Hall 2008). There also exist larger
structures called mesogranules; these have lifetimes of 30–40min (Roudier et al.
1998). The largest convective cells, known as supergranules, have sizes of order
40–50Mm and remain on the stellar surface for about a day (Del Moro et al. 2004).

This short frequency bustling leads to variations in brightness, which we can
now easily probe on Sun-like stars thanks to high precision, short cadence Kepler
photometry (Gilliland et al. 2011).
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Fig. 2.3 Granulation on the solar surface, observed at high resolution with the Swedish 1-m tele-
scope, at La Palma. A sunspot is visible in the top-right corner—its dark centre, known as the
umbra, is surrounded by a lighter region known as the penumbra. Convection cells are visible on
the photosphere surrounding the spot. Image credit: Vasco Henriques, http://www.isf.astro.su.se/
gallery/images/2010/ (link valid as of March 2015)

The vertical motions of convection produce RV variations of the order of around
2km · s−1. Since there are about 1 million granules on the visible hemisphere of the
Sun at any time, the globalRVvariations can be thought of as arising fromfluctuations
in the number of granules present. The fluctuations obey Poisson statistics, so they
are on the order of the square root of the number of granules, reducing the observed
RV flicker on the granulation timescale from 2km · s−1 down to 2 m · s−1 (Lindegren
and Dravins 2003). The first evidence of the such RV variations were observed by
Labonte et al. (1981) and Kuhn (1983) on the Sun. Several years later, Kjeldsen et al.
(1999) reported on the first clear evidence of periodic fluctuations due to granulation
in a star other than the Sun, α Cen A.

We can go back to the RV observations of μ Arae, shown in Fig. 2.1 to identify
its granulation signature. In panels (a) and (b), we can see variations over a longer
timescale than that of the p-mode oscillations. An inspection of the periodogram in
Fig. 2.2 reveals peaks close 1 and 2h,which can be attributed to granulation (although
in this particular case, these peaks may be aliases of a longer 8-h cycle that can be
seen in plots of the full 8 nights of data, presented in Bouchy et al. 2005).

As for p-modes, adapting our observing strategy to mitigate their effect on RV
measurements also works for granulation. Taking several RV measurements on each
night observed (generally 2 to 3 measurements) spaced by about 2h significantly
reduces the RV effects of granulation (Dumusque et al. 2010).

2.1.4 Days and Longer: Gravitational Redshift

Photons escaping from the photosphere are slowed down by the strong gravitational
potential of the star; the photons become redshifted, causing the centres of the spectral

http://www.isf.astro.su.se/gallery/images/2010/
http://www.isf.astro.su.se/gallery/images/2010/
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lines to shift. In the case of the Sun, this results in a shift in RV of order 600m · s−1

(Lindegren and Dravins 2003). The magnitude of this shift depends on the stellar
radius, and Cegla et al. (2012) calculated that a change of 0.01% in the radius of
the Sun would induce a shift of about 6cm · s−1 in RV This is enough to mimic
or mask the orbital reflex motion of the Earth in our solar system if the radius
fluctuations are taking place on a long enough timescale. Cegla et al. (2012) found
that fluctuations occurring over 10 days or longer became significant. This means
that we do not have to worry about the effect of p-modes; however, changes in the
granulation pattern on the stellar surface and the Wilson depression of starspots (see
Solanki 2003 and references therein) can potentially produce radius fluctuations that
would yield small, but significant RV variations (see Cegla et al. 2012 and references
therein). Variable gravitational redshift is not a major source of activity-induced RV
variations, however.

2.1.5 Stellar Rotation Period: Spots, Faculae and Plage
Regions

Stellar surface features such as spots and networks of faculae induce photometric and
spectroscopic variations that are modulated by the rotation period of the star. These
signals pose a serious challenge to the detection of exoplanets. Various decorrelation
methods have been developed (see Sect. 2.2), but no simple and all-inclusive recipe
has yet been found.

2.1.5.1 Sunspots and Starspots

Sunspots are seen as dark areas on the surface of the Sun (see top right corner of
Fig. 2.3). Hale (1908) was the first to notice Zeeman splitting of lines produced in
these dark regions and deduced that sunspots are regions of strong magnetic fields.
They are indeed areas where magnetic flux loops emerge from the solar surface
(Solanki 2002); the magnetic fields inhibit part of the outgoing convective heat flux,
resulting in areas of reduced brightness and temperature. The spots usually appear
as pairs of opposite magnetic polarity. For a detailed review of the general properties
of sunspots, refer to Solanki (2003).

Observations of similar dark and magnetic structures on the surfaces of other
stars have led to the concept of stellar spots. Starspots are defined as “an environ-
ment in which magneto-convective interaction significantly suppresses convective
energy transport over an area large enough that a structure forms that is cool and
dark relative to the surrounding photosphere” (Schrijver 2002). They are similar to
sunspots in many aspects; the most notable difference is that starspots can attain
huge sizes and can exist near the poles of their stars (Strassmeier 2009). In the next
few paragraphs, I briefly describe the main properties of sunspots and starspots.
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Many of the papers cited below are part of the Proceedings of the First Potsdam
Thinkshop on Sunspots and Starspots (Strassmeier et al. 2002). I also learned much
on starspots from reviews by Berdyugina (2005) and Strassmeier (2009). Thomas
and Weiss (2008) is a comprehensive book on starspots and sunspots. These are all
excellent sources of information to find out more about the physical properties of
sunspots and starspots.

Sunspots have temperatures ranging from 600 to 1800K less than the surrounding
photosphere, and starspots have similar temperature differences ranging from 500
to 2000K (Schrijver 2002). Since spots have lower temperatures than the rest of the
stellar surface, they appear darker. We can determine their magnetic field strength
and the magnetic filling factor over the whole stellar surface via Zeeman splitting
of spectral lines, using high-resolution spectra; we are not yet able, however, to
disentangle these twoquantities (Saar 1991; seeReiners 2012 and references therein).

As spots grow and decay, they induce variations in photometry that are modulated
by the star’s rotation (see some example lightcurves in Fig. 2.11). As a star rotates,
one half of the disc is moving towards us, while the other half is moving away; as a
result, the flux emitted by the approaching half is blueshifted, while the receding half
is redshifted. If the stellar surface presents no features, the Doppler shifts from both
sides cancel each other out and the spectral line profile is undisturbed, as pictured in
the left diagram of Fig. 2.4. A starspot coming in and out of view as the star rotates,
as shown in the subsequent diagrams of Fig. 2.4, blocks some of the flux of the star,
inducing an imbalance between the redshifted and blueshifted halves of the star. This
produces an asymmetry in the shape of the total line profile, thus shifting its centroid
by a small amount. These perturbations to the line profile translate into RV variations
of the order of 1m · s−1 for sunspots (Lagrange et al. 2011; Makarov et al. 2009);

Fig. 2.4 Diagram illustrating how flux blocked by starspots on the rotating stellar disc induces
asymmetries in the spectral lines, leading to variations in RV
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starspot-induced RV variations can be much greater for more active, more rapidly
rotating stars.

We can monitor these line-profile distortions to track the evolution of spots. This
technique, commonly known as Doppler imaging, was first applied to the rapidly-
rotating star HR 1099 by Vogt and Penrod (1983) to reconstruct a stellar surface
brightness map. It was later applied to the rapidly-rotating K dwarf AB Doradus, by
Donati and Collier Cameron (1997) to map the stellar magnetic flux distribution. The
procedure is illustrated in Fig. 2.5, with HARPS cross-correlations functions (CCFs)
of sunlight scattered from the bright asteroid Vesta (I present a detailed analysis of
these observations in Chap.5). The CCFs obtained from each observation are first
stacked on top of one another to obtain a time series of line profiles, as shown in
panel (a); I then compute the mean line profile shown in panel (b); finally, I subtract
this mean profile from each CCF of the time series, in order to reveal asymmetries
in the line profiles, as shown in panel (c). These distortions are produced by sunspot
groups drifting across the solar disc. Using this technique, we can deduce the latitude
of the spot groups and therefore construct maps of the stellar surface. The Doppler
imaging technique works best on (fast-rotating) stars with long-lived spot groups
that will remain on the stellar disc for several rotations.

Sunspots have sizes ranging from 1,500 to 20,000km, and even the largest spots
will only cover a small fraction of the solar surface (<1%). The average sunspot
coverage on the Sun is typically between 0.0001 and 0.1%, depending on the phase
of the solar cycle (Strassmeier 2009). It is trickier to determine the sizes of starspots
are we cannot resolve their surfaces at high resolution. The amplitude of photometric
variations depends on the size of a spot, or group of spots present at a given longitude,
but it also depends on the contrast in brightness of the spot group,which itself depends
on the temperature contrast. This is a complex issue, and many studies have been
carried out to disentangle these two quantities using Doppler imaging (Catalano
et al. 2002 and references therein). Doppler imaging uncovered starspots of all sizes

Fig. 2.5 Doppler-imaging the Sun! in three simple steps: a make a time series of the CCFs; b
compute the mean line profile; c subtract the mean line profile from the time series to reveal line-
profile distortions caused by sunspots and groups of faculae trailing across the solar disc

http://dx.doi.org/10.1007/978-3-319-41273-3_5
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ranging from 0.1 up to 22% of the stellar surface (Strassmeier 2009). There have also
been observations of huge polar spots on some stars (see Schrijver 2002; Strassmeier
2009 and references therein).

Sunspots as well as small starspots live from a few days up to several weeks
(Schrijver 2002; Allen 1973; Hussain 2002). In general, the lifetime of a spot is
proportional to its size (Berdyugina 2005); spots decay by diffusing out into the sur-
rounding photosphere, so spots with a relatively larger area-to-perimeter ratio should
take more time to disappear (Solanki 2003; Petrovay and van Driel-Gesztelyi 1997;
Robinson and Boice 1982). This has been confirmed observationally via Kepler data
(see Helen Giles, MSci project at University of St Andrews, results to be published).

On the Sun, sunspots are always found between the latitudes of±35◦; theymigrate
closer to the equator as the solar cycle progresses (see Sect. 2.1.6). A similar behav-
iour is seen on other stars, although spots can also be found at much higher latitudes.
Sunspots preferentially appear at so-called active longitudes, where increased mag-
netic activity in a localised region causes spots to manifest repeatedly in the same
region (Berdyugina and Usoskin 2003). Active longitudes have also been observed
on other stars (Olah et al. 1989; Lanza et al. 2009 and others). They rotate in phase
with the stellar rotation (modulo differential rotation), and could explain a persistent
coherent starspot signal. Ivanov and Kharshiladze (2013) found that prominent solar
active longitudes can survive for up to 20 solar rotations.

2.1.5.2 Faculae and Plage

Faculae are small bright pores on the stellar photosphere and are associated with
strong magnetic fields (Spruit 1976). On the Sun, they are around 100K hotter than
the rest of the photosphere (Thomas and Weiss 2008). They are found in the inter-
granular lanes, and surround spots—spots are always surrounded by faculae and
plage. Faculae, however, can exist on their own and are grouped together into large
networks. Because they are shaped as thin flux tubes with bright walls, they are best
seen near the stellar limb. Faculae have lifetimes of a couple of hours (Hirayama
1978), but groups of faculae can remain on the stellar surface for several weeks and
will last for several stellar cycles. Faculae always appear before spots and will also
outlive them. As we will see in Sect. 2.1.6, old and slowly-rotating Sun-like stars are
dominated by faculae over starspots.

Plage regions are bright areas of the chromosphere made up of small bright points
known as flocculi (see Zirin 1966 and references therein). Flocculi, or facular bright
points (Soltau 1993) are surrounded by thin and dark upward moving jets known
as spicules (Roberts 1945; Zirin 1966). Similarly to faculae, flocculi (and spicules)
have short lifetimes of 15 to 30min and appear brighter close to the limb (although
as we get too close to the edge they become obscured by the tall spicules).

Chromospheric plage regions map closely to faculae and spots in the underlying
photosphere. Plages and faculae tend to be located near sunspots, although their rela-
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Fig. 2.6 Schematic
representation of convection
cells on the stellar surface

tionship is not yet understood (Hall 2008; Schrijver 2002). Athay (1974)3 provides
further in-depth discussions on the nature of plage regions and possible relations
between photospheric and chromospheric active regions (see Bumba and Ambroz
1974 in particular).

Emission lines such as Ca iiH&K,Hα and the Ca ii triplet lines form at the level of
the chromosphere, and are good indicators of plage regions (Mallik 1996; Cincunegui
et al. 2007). Activity indicators based on the Ca ii H&K lines are discussed further
in Sect. 2.2.1.1.

The photometric effect of faculae is negligible as they are not significantly brighter
than the quiet photosphere and they are evenly spread on the stellar disc; they do,
however, induce a strong signature in spectroscopic observations. The strong mag-
netic fields present in faculae and spots act to inhibit the convection process taking
place at the stellar surface. Let us think back on granulation, and take a closer look
at its spatial structure. Granules can be approximated as bright hexagonal cells; they
are surrounded by dark intergranular lanes, as illustrated in Fig. 2.6. The material in
the intergranular lanes is cooler and therefore more compact than the hot fluid of the
granules, which means that over the whole stellar disc, we see a larger proportion
of hot, uprising fluid over cool, sinking material (Gray 1989). This results in a net
blueshift, with a magnitude of about 200m · s−1 on the Sun (see Meunier et al.
2010 and references therein). The presence of networks of faculae suppresses part
of this blueshift.4 As they evolve, active regions can lead to RV variations of up to
8–10m · s−1 for the Sun (Meunier et al. 2010), as well as the active Sun-like star
CoRoT-7 (Haywood et al. 2014, see Chap.4). Suppression of convective blueshift is
thought to play a dominant role in activity-induced RV variations on Sun-like stars,
particularly in the case of faculae/plage, which are thought to cover a much larger
fraction of the stellar surface than spots.

2.1.5.3 Other Possible Sources of Surface Velocity Fields

As I have shown in this chapter so far, the stellar photosphere and chromosphere are
bustling with all kinds of constantly evolving and moving features such as granula-

3Chromospheric fine structure: proceedings from IAU Symposium no. 56 held at Surfer’s Paradise,
Qld., Australia, 3–7 September 1973.
4Starspots also act to suppress convection, but they contribute little flux and therefore do not play
a significant role in this process (see Dumusque et al. 2014 and references therein).

http://dx.doi.org/10.1007/978-3-319-41273-3_4
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tion, spots, networks of faculae and plage regions. There are other phenomena that
may induce RV variations, such as ∼50m · s−1 horizontal inflows towards active
regions recently found on the Sun (Gizon, Duvall and Larsen (2001); Gizon, Birch
and Spruit (2010)). Such photospheric velocity fields may affect the RV curve (par-
ticularly when located towards the limb, as they are horizontal flows) even if they
have no detectable photometric signature.

2.1.6 Decades: Magnetic Cycles

The Sun has an activity cycle of 11 years (Schwabe 1844; Hathaway 2010). Progres-
sion into the cycle towards higher activity is observed as an increase in the number
of sunspots, faculae, plages and is also accompanied by a more frequent occurrence
of violent events such as prominences and coronal mass ejections (see Hathaway
2010 for a detailed review). At minimum activity, sunspots are located at latitudes of
30–35◦. As the cycle advances, they are found closer and closer to the equator. This
results in a pattern known as the “butterfly diagram” (Maunder 1904).

In 1966, Dr Olin Wilson founded the HK Project, a survey of 1296 Sun-like stars
within 50 pc of our Sun that was undertaken in an effort to characterise their activity
levels and see whether other stars also displayed activity cycles similar to the Sun’s
(Wilson 1968). Observations were made with the Coudé scanner attached to the
100-inch telescope at the Mount Wilson observatory. The fluxes in the Ca ii H and
K lines were measured, as it was already known for the Sun that the flux in these
lines is correlated with the number of sunspots, i.e. an indicator of activity (Leighton
1959; Sheeley 1967—see Sect. 2.2.1.1). Wilson (1978) presented results on 91 stars
after the first 11 years of observations, showing the first evidence for cyclic stellar
variability.

In 1977, an improved photoelectric spectrometer was built by Dr Arthur Vaughan
and placed on the 60-in. telescope, also on Mount Wilson (Vaughan et al. 1978).
The activity index S was developed by Vaughan et al. (1978) in order to quantify
levels of activity; I will define it further in Sect. 2.2.1.1. Values of the S-index (or the
logR′

HK, also see Sect. 2.2.1.1) for over a thousand stars were calculated and reported
in Duncan et al. (1991), Baliunas et al. (1995), Henry et al. (1996), and Lockwood
et al. (1997).

Baliunas et al. (1998) noticed that the majority of stars surveyed showed periodic
variations with cycles of at least 7 years, and some lasting more than 30 years. A
quarter of the stars displayed variability but with no apparent periodicity, while the
remaining 15% seemed to show no activity at all. The survey ran until 2003, and
to this date remains the most extensive survey on stellar activity and variability. A
similar and complementary project at Lowell Observatory (Arizona, USA) with the
Solar-Stellar Spectrograph was initiated in 1994 (Hall et al. 2007) to record activity
in Sun-like stars, and has made more than 20,000 observations since.

In parallel, it was found that as Sun-like stars get older, they rotatemore slowly and
their magnetic activity levels decline (Wilson 1963; Kraft 1967; Skumanich 1972,
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Noyes et al. 1984). This means that young stars tend to rotate faster and be more
active, and old stars like the Sun rotate more slowly and have lower activity levels.

Further studies on the variability of Sun-like stars by Radick et al. (1998) and
Lockwood et al. (2007), based on the Mount Wilson and Lowell stellar samples,
revealed the existence of distinct types of variability patterns. In young stars, photo-
metric variations tend to be anti-correlated with chromospheric variations (logR′

HK),
which indicates that their surfaces are dominated by spots during phases of high
activity levels. In the case of older, slowly-rotating stars such as the Sun, photometric
variations are positively correlated with chromospheric variations. This means that
their surfaces are dominated by faculae rather than spots. The dividing line between
these two types of variability was found to be at logR′

HK = −4.7. The Sun, with
logR′

HK = −4.96 lies just below this limit and its surface is thus faculae-dominated.
The long-term, continuous observations obtained over the last decades have given

us an invaluable insight into the time-variant activity patterns of stars other than our
Sun.We are still left to wonder, however, about the spatial evolution of stellar activity
over these long timescales. For example, do starspots migrate across the surface in
the same way that sunspots do? Sanchis-Ojeda et al. (2011) and Sanchis-Ojeda and
Winn (2011) showed that it is possible to deduce the latitude of starspots occulted
by planetary transits. Llama et al. (2012) successfully recovered spot locations from
transit occultations in the continuous, high-precision photometry provided by the
Kepler satellite over its 3.5-year lifetime. They carried out simulations of magnetic
cycles for a range of cycle durations and found that it is possible to track themigration
of spots on active stars with short activity cycles; with a longer dataset, they would
be able to characterise spot-belts on Sun-like stars. A couple of simulated “butterfly
diagrams” with different activity levels are shown in Fig. 2.7.

Stellar magnetic cycles can produce significant RV variations, in some cases of
up to 25m · s−1 (Lovis et al. 2011). So far, we have been searching mostly for short-
period planets (P < 50 days). A few large RV programs with HARPS and HIRES
have been running for 5–10 years (including Lovis et al. 2011; Marcy et al. 2014).
They are only just beginning to catch glimpses ofmagnetic cycles inRVobservations.
In their recent detection of an Earth-mass planet with a 3-day orbit aroundαCentauri

Fig. 2.7 Simulated “butterfly diagrams” for stars with an 11-year activity cycle like the Sun, with
low and high activity levels, respectively. The blue dots show spots that have been recovered through
bumps in the transit lightcurve, while the small grey dots represent the input butterfly pattern, for
reference. These plots were made by Dr Joe Llama, based on work from Llama et al. (2012)
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B, from the analysis of over 3 years of data, Dumusque et al. (2012) found that the
long-term activity-induced RV variations followed the variations in logR′

HK. They
were therefore able to model the RV variations assuming a linear relationship with
logR′

HK. This may not work as well if the planet’s orbital period is comparable to
the magnetic cycle, however, and as we begin to look for Jupiters and Saturns with
orbital periods comparable to magnetic activity cycle durations, this will become a
growing concern.

2.1.7 Timescales: Summary

The surface of a star is constantly bustling with magnetic activity, which leads to a
plethora of RV perturbations. On the shortest timescales (oscillations, granulation),
we can average out most of the effects on RV by adapting our observing strategy. On
timescales of the order of decades, assuming a linear relationship between long-term
activity RV variations and logR′

HK variations will work as a first approximation,
although as we begin to look for long-period planets we are going to require more
effective methods and proxies.

The most complex activity-induced RV variations, which cause the most trouble
in today’s RV exoplanet surveys arise from processes taking place on the stellar
rotation timescale. Strongly magnetised photospheric features such as starspots and
networks of faculae (as well as chromospheric plage regions) inhibit convective
motions occuring just below the stellar surface, thus suppressing part of the blueshift
naturally resulting from granulation. This effect can lead to variations in RV of up to
10m · s−1 (Meunier et al. 2010; Haywood et al. 2014). In addition, starspots coming
in and out of view as the star rotates induce an imbalance between the redshifted and
blueshifted halves of the star which translates into an RV modulation of the order
of 1m · s−1 (Lagrange et al. 2011; Makarov et al. 2009). There may even be other
processes at play which induce significant RV variations (Haywood et al. 2014), such
as horizontal flows toward active regions (Gizon et al. 2001, 2010) or other unknown
processes, whose impact on RV variations will require further investigation.

Identifying informative and reliable proxies for activity-driven RV variations has
become crucial for exoplanet detection and characterisation. In the next section,
I outline the various proxies and activity decorrelation techniques that have been
developed for RV planet searches so far.

2.2 Existing Treatments for Activity-Induced RV Variations

This section provides a detailed summary of the analysis techniques developed to
identify planetary signals in the presence of stellar activity. Themethods of harmonic
decomposition, pre-whitening and nightly offsets were initially developed to deter-
mine the mass of transiting super-Earth CoRoT-7b, so if you wish to place them in
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a more “historical” context, you can read the introduction on CoRoT-7 in Chap.4,
Sect. 4.1.1 in parallel.

2.2.1 Spectroscopic Activity Indicators

The following indicators, derived from the same stellar spectra used to measure
the stellar RV, are affected by stellar activity only, so any variations present in RV
observations but not seen in these indicators may point to a planetary signal.

2.2.1.1 Activity Indicators Based on Ca ii H & K Line Fluxes

The S-index was first used by Vaughan et al. (1978). In his review on stellar chro-
mospheric activity, Hall (2008) defines it as “a dimensionless ratio of the emission
in the line cores [of Ca ii H & K] to that in two nearby continuum bandpasses on
either side of the H and K lines”. The S-index can therefore be expressed as:

S = α
�H + �K

�V + �R
, (2.1)

where �H and �K refer to the fluxes in the cores of the H and K lines respectively,
and �V and �R refer to the fluxes in the bands on the violet and red sides of the
H and K lines. The term α is a normalisation factor. The amount of flux measured
in the reference passes, however, depends on spectral type so the S index cannot be
used to compare stars of different colours. The S-index also varies when applied to
measurements taken with different instruments, since the level of transmission of the
bandpasses depends intrinsically on the instrumentation used. Middelkoop (1982)
was the first to apply a correction term to the S-index in order to overcome its color
dependence.

The R
′
HK index was introduced by Noyes et al. (1984) in an effort to propose an

activity index independent on spectral type and instrument design.Hall (2008) defines
it as “the fraction of a star’s bolometric luminosity radiated as chromospheric H and
K emission”. This is expressed in mathematical terms as (Martínez-Arnáiz et al.
2010):

R
′
HK = �

′
H + �

′
K

σT 4
eff

, (2.2)

where σ denotes the Stefan–Boltzmann constant and Teff is the effective temperature
of the star. The primes on the fluxes� are to show that the chromospheric contribution
of the reference star has been subtracted. Note that there� ′ values in this context are
also in the form of fluxes measured at the stellar surface, rather than those received
by the observer, to be consistent with the use of σT 4

eff . The R
′
HK index is widely used,

usually in logarithmic units.

http://dx.doi.org/10.1007/978-3-319-41273-3_4
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2.2.1.2 Indicators Derived from the Cross-Correlation Function

As I described in the previous chapter, in order to measure the RV of a star all the
lines of a spectrum are combined together to produce a mean line profile known as
the cross-correlation function (CCF). Its shape reflects the shape of all the lines in
the spectrum, which are affected by physical processes taking place in the stellar
atmosphere, where these lines form. Here I present two measures of the shape of the
CCF, that have been used in previous studies to identify activity-induced signals in
RV data.

Full width at half-maximum (FWHM)The full width at half-maximumof theCCF,
or FWHM is shown in Fig. 2.8. The FWHM is determined by the stellar rotation rate,
i.e. the v sin i of the star (Desort et al. 2007). Since younger, fast rotating stars tend
to be more active, it ensues that the FWHM gives a general indication of the levels
of magnetic activity of a star. The FWHM also incorporates the intrinsic width of
the line due to thermal and turbulent motions in the stellar photosphere.

The FWHM changes as a spot of facular region crosses the stellar disc, in order
to conserve the area enclosed by the line profile (see Fig. 2.4). RV perturbations
arising from the flux blocked by starspots on a rotating star are therefore correlated
with variations in the FWHM. This indicator has been used by a number of studies,
including Queloz et al. (2009), Hatzes et al. (2010) and Lanza et al. (2010) in the
case of CoRoT-7 (see Chap.4, Sect. 4.1.1) to identify activity-related signals.

Bisector of the cross-correlation function (BIS) A more sophisticated measure
is the bisector of the CCF (see Fig. 2.9). It is defined as a measure of the general
asymmetry of the lines of a spectrum (Voigt 1956), and was first used for exoplanet
detection by Queloz et al. (2001). Amore rigorous definition of the bisector, given by
Perryman (2011) is: “the locus ofmedian pointsmidway between equal intensities on
either side of a spectral line, thereby dividing it into two halves of equal equivalent
width”. For a line profile with a perfect Gaussian shape, this would be a straight

Fig. 2.8 The full width at
half-maximum of the
cross-correlation function

http://dx.doi.org/10.1007/978-3-319-41273-3_4
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Fig. 2.9 How the shape of the line bisector is affected by surface granulation. Panel a Schematic
representation of granulation pattern. Panel b Line profiles resulting from light emitted by the
bright granular regions (top, yellow line) and dark intergranular regions (bottom, brown line). Panel
c Effective line profile (blue), with its “C”-shaped line bisector (red); the undisturbed profile and
its bisector are drawn in dotted lines. This figure was inspired from a similar figure in Dravins et al.
(1981)

vertical line going through the middle of the line profile (dotted lines in Fig. 2.9c).
However, the net blueshift produced by granulation on the stellar surface (explained
back in Sect. 2.1.5.2) results in a bisector curved towards the top (see Fig. 2.9c). The
granulation pattern is made of dark regions surrounding bright granules (panel (a);
see Sect. 2.1.3). The bright upflowing granules produce the blueshifted line profile
shown in yellow in panel (b), while the dark sinking intergranular flow leads to
the redshifted line with a lower intensity, shown in brown on panel (b). The total
line profile is the sum of these two profiles, as pictured in blue in panel (c). It is
asymmetric, and its bisector (full red line) is curved at the top. Active regions that
reduce this net blueshift will thus produce small distortions in the bisector. Many
quantities have been defined in relation to the bisector, such as the bisector velocity
span (Toner and Gray 1988), the curvature of the line bisector (Hatzes 1996), and the
bisector inverse slope (Queloz et al. 2001); see Figueira et al. (2013) and references
therein for more detail.

Desort et al. (2007) found that the FWHM, the BIS and photometric variations
do not give enough information for slowly rotating, Sun-like stars (low v sin i) to
disentangle stellar activity signatures from the orbits of super-Earth-mass planets
(see also Chap.5, Section 5.4.2).

2.2.2 Nightly Offsets Method

This technique is very effective for short-period planets observed 2 to 3 times each
night. It was successfully applied to the CoRoT-7 and Kepler-78 systems (Hatzes
et al. 2010, 2011; Pepe et al. 2013; see Chap.4).

Activity-related signals change on relatively long timescales (of the order of Prot),
whereas the planet’s orbital period will be of a few hours (up to 1–2 days). In such a
case, it is reasonable to assume that, on a given night, the rotation-modulated stellar
activity contribution to the RV signal is roughly constant, and all the variations

http://dx.doi.org/10.1007/978-3-319-41273-3_5
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occuring over the span of a few hours are caused by the orbital reflex motion of the
planet. This will work well for stars with low granulation “flicker” (see Sect. 2.3.2.3
which introduces the F8 statistic, a good measure of this noise source).

We can fit a linear function of the form:

mi = A cos(ωti) + B sin(ωti) + Cj, (2.3)

where A and B give the amplitude and phase of the RV signal, and there is an
offset Cj for each night which represents the offset produced by the slowly varying
activitymodulation. The best-fit parameters can be determined via an optimal scaling
procedure as follows. First, Cj is calculated for each night by taking the variance-
weighted average of the data yi in each single night:

Ĉj =

nj∑

i=1
yij wij

nj∑

i=1
wij

. (2.4)

The subscript j refers to each night and goes from 1 to the total number of nights,
whereas the subscript i refers to each individual data point in each night and goes
up to the number of points in each night (nj). wi are the inverse variance weights
defined as:

wi = 1

σ2
i

, (2.5)

where σi is the error associated with the data yi.
The constant parameters A and B are found by performing the following summa-

tions over the whole dataset:

Â =
∑

ij [yij − Ĉj − B̂ sin(ωtij)] cos(ωtij) wij
∑

ij cos
2(ωtij) wij

, (2.6)

and

B̂ =
∑

ij [yij − Ĉj − Â cos(ωtij)] sin(ωtij) wij
∑

ij sin
2(ωtij) wij

. (2.7)

An iteration is then carried out until A and B both converge. For further detail on
iterative optimal scaling, the reader may refer to Collier Cameron et al. (2006) or
Keith Horne’s Ways of Our Errors.5

5Unpublished as of August 2015 but available online at: http://star-www.st-and.ac.uk/~kdh1/ada/
woe/woe.pdf.

http://star-www.st-and.ac.uk/~kdh1/ada/woe/woe.pdf
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2.2.3 Harmonic Decomposition

As shown by Jeffers et al. (2009), any starspot configuration can be modelled by
a series of harmonics of Prot containing only the first three or four Fourier terms.6

Subtracting this model from the data will help reveal signals that do not originate
from the star’s activity. Harmonic decomposition is based on three parameters: the
stellar rotation period, the number of harmonics and the coherence time. The rotation
period can be determined via Lomb–Scargle or autocorrelation techniques, which I
describe later in Sects. 2.3.2.1 and 2.3.2.2.

Harmonic decomposition can be implemented by fitting a Fourier series of the
form:

mi = m0 +
l∑

k=1

[Ck cos(k ωti) + Sk sin(k ωti)] , (2.8)

where the number of desired harmonics is given by l and m0 is a constant. The best
fit can be determined via an iterative optimal scaling procedure akin to that presented
in Sect. 2.2.2.

In this case, the inverse variance weights are given by:

wi = G(t − ti)

σ2
i

, (2.9)

where G is a Gaussian function defined as:

G(t − ti) = exp

[

−1

2

( t − ti
τ

)2
]

. (2.10)

τ is the coherence time. It governs the time interval over which each data point at
time ti retains its importance. τ is normally chosen to be slightly less than the rotation
period of the star, so that it is short enough to filter out the slow varying signals (due
to activity—starspots usually have lifetimes of about one rotation period or longer),
but not so much that it will destroy short period signals.

This technique was applied to CoRoT-7 using the first three harmonics (Queloz
et al. 2009; Hatzes et al. 2010), and up to the first six harmonics (Ferraz-Mello et al.
2011). It was found that the activity signal can be reproduced nearly perfectly using
only the first three (Queloz et al. 2009), since for higher harmonics the amplitude of
the signal becomes negligible.

6As a side note, this also means that we cannot reconstruct a map of the stellar surface solely based
on its photometric variations!
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2.2.4 Pre-whitening

A Fourier analysis is carried out to find the strongest period in the signal, and a
sinusoidal fit with this period is subtracted from the data. We repeat this until the
noise level is reached. This is a quick way to uncover the strongest periods present
in the signal and to compose a periodogram. It is analogous to the CLEAN method
derived by Högbom (1974) and Roberts et al. (1987). See also Queloz et al. (2009)
and Hatzes et al. (2010).

2.2.5 The FF′ Method

Aigrain et al. (2012) found that RV variations induced by starspots are well repro-
duced by amodel consisting of the product of the photometric flux F and its first time
derivative F ′. It is assumed that the spots are small and limb-darkening is ignored.
Spots influence the stellar RV by suppressing the photospheric surface brightness at
the local rotational Doppler shift of the spot. Also, in areas of high magnetic field
such as faculae, which on the Sun are often associated with spot groups, the con-
vective flow is inhibited, leading to an attenuation of the convective blueshift (see
Sect. 2.1.5.2). This effect is thought to be the dominant contribution to the total RV
signal in the Sun (Meunier, Desort and Lagrange 2010).

As shown in Fig. 2.10, the RV perturbation�RVrot to the star’s RV incurred by the
presence of spots on the rotating photosphere varies with both the flux deficit of the
spot (F) and the line-of-sight velocity; F varies with foreshortening, so it has a cos
phase, while the line-of-sight velocity varies with a sin phase (so it is proportional to
F ′). As derived in Aigrain et al. (2012), the RV perturbation due to a spot crossing
the disc can be expressed as follows:

�RVrot(t) = − �̇(t)

�0

[
1 − �(t)

�0

] R�

f
, (2.11)

where �(t) is the observed stellar flux, �0 is the stellar flux for a non-spotted pho-
tosphere and �̇(t) is the first time derivative of �(t). R� is the stellar radius. The
parameter f represents the drop in flux produced by a spot at the centre of the stellar
disc, and can be approximated as:

Fig. 2.10 The FF ′ method for a spot crossing the stellar disc. The RV variations induced by
flux blocking (�RVrot) and suppression of the convective blueshift (�RVconv) are proportional to
F dF/dt and F2, respectively
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f ≈ �0 − �min

�0
, (2.12)

where �min is the minimum observed flux, i.e. the stellar flux at maximum spot
visibility.

The effect of the suppression of convective blueshift on the star’s RV produced by
starspots and magnetised areas surrounding them, written as �RVconv, is shown in
Fig. 2.10. �RVconv varies with foreshortening and the angle between the convective
velocity vector and the line of sight. Both vary with the flux, so �RVconv depends on
F2:

�RVconv(t) =
[
1 − �(t)

�0

]2 δVc κ

f
, (2.13)

where δVc is the difference between the convective blueshift in the unspotted photo-
sphere and that within the magnetised area, and κ is the ratio of this area to the spot
surface (Aigrain et al. 2012). The two RV basis functions are pictured in Fig. 2.10.

This method does not depend on the period of rotation of the star, nor does it
rely on complicated spot models. Aigrain et al. (2012) report on tests on HD 189733
that show it successfully reproduces previous results based on more complex models
(Lanza et al. 2011). They also tested it on 600 Kepler targets and obtained promising
results, given that the FF ′ method is very easy and quick to implement and could
thus be applied to large datasets.

The FF ′ method is likely to provide an incomplete representation of activity-
induced RV variations, however (Haywood et al. 2014—see Chap.4, Sect. 4.1). The
FF ′ method does not consider the broad-band photometric effect of faculae that
are not physically associated with starspots; Aigrain et al. (2012) assume that their
effect on�RVrot is quite small as they tend to have low photometric contrast. Indeed,
according to Lockwood et al. (2007), faculae become less important (relative to
spots) in stars more active than the Sun (see Sect. 2.1.6). Faculae do, however, have a
significant impact on the suppression of convective blueshift (Meunier et al. 2010);
indeed we find that this effect dominates the total RV contribution induced by stellar
activity (see Sect. 4.1.5.7). There are other phenomena that the FF ′ method does not
account for, such as ∼50ms−1 inflows towards active regions recently found on the
Sun (Gizon et al. 2001, 2010—see Sect. 2.1.5.3). Such photospheric velocity fields
may affect the RV curve even if they have no detectable photometric signature. In
addition, some longitudinal spot distributions have almost no photometric signature,
so the FF ′ method would not account for them.

2.2.6 Existing Methods: Summary

The planet masses determined via all these methods should all agree, though the rms
scatter in the residuals may differ depending on how good the assumptions are. This
reflects the fact that planet mass determinations are intimately tied to the methods

http://dx.doi.org/10.1007/978-3-319-41273-3_4
http://dx.doi.org/10.1007/978-3-319-41273-3_4
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that we use to model activity-induced RV variations. It is therefore crucial that we
design effective decorrelation techniques (see Chap.4) and better proxies for activity
signals (see Chap. 5). In the meantime, we can minimise the problem by selecting
stars that are less likely to show activity-induced RV variations; this is the focus of
the next section of this chapter.

2.3 RV Target Selection Based on Photometric Variability

Since we do not yet know how to fully and reliably model all activity-induced RV
variations, it is essential that we carefully pick stars for RV follow-up. Otherwise we
may unknowingly choose a star with a rotation period that matches the orbital period
of the planet, for example, and end up wasting huge amounts of telescope time for
an imprecise, potentially even inaccurate planet mass determination.

Stars that havebeenobservedby the high-precisionphotometryCoRoTandKepler
missions are ideally suited for potential RV follow-up, as we can learn a lot about
their magnetic behaviour from their lightcurves.

The following question springs to mind: how do we define a magnetically “man-
ageable” star for RV follow-up? This not only depends on the amplitude and fre-
quency structure of activity variability; it is also tied with the mass and orbital period
of the planet, and the decorrelation methods that we have developed to date.

For example, it is relatively easy to determine the mass of a super-Earth with a
very short orbital period (typically less than 1 day), even if the host star is very active;
the orbital and stellar rotation periods will be so different that we can take several
observations per night and assume that all the variations produced within each night
are solely due to the planet’s orbital motion (see Sect. 2.2.2).

As a member of the Target Selection Tiger Team of the HARPS-N Guaranteed
Time Observations collaboration, I was led to define magnetic manageability criteria
to help us identify suitable Kepler candidates for HARPS-N RV follow-up (summer
season of 2014).

2.3.1 Preliminary Target Selection Criteria

Before subjectingKepler candidates to activity-related triage, a preliminary selection
(from a pool of 600 available targets) was done by other members of the HARPS-N
team. It includes the following criteria:

1. Target brightness: the majority of Kepler stars are too faint for ground-based
RV follow up. This criterion was embedded in an estimation of the RV preci-
sion that would be achieved with the HARPS-N instrument. In this particular
aspect, HARPS-N is a twin of HARPS, so we can use a relatively simple formula

http://dx.doi.org/10.1007/978-3-319-41273-3_4
http://dx.doi.org/10.1007/978-3-319-41273-3_5
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determined by Bonfils et al. (2013). As a rule of thumb, stars should have a
magnitude less than V ≈ 13 mag.

2. Time required for a (3- or) 6-sigma detection: this can be calculated from the
expected RV semi-amplitude of the planet candidate, which can itself be derived
by assuming a bulk density (either a fixed value e.g. ρ = 3 g · cm−3, or a radius-
dependent value determined from mass-radius relations such as those derived by
Weiss and Marcy 2014).

3. Number of planet candidates in the system; scientific interest related to each
individual candidate (what is the scientific goal of this study: are we trying to
populate the mass-radius diagram at a given radius/mass range? Are we trying to
find other rocky mini-Neptunes like Kepler-10c?).

4. Observability: depending on how many months/years our survey is likely to last,
determine the longest orbital periods it is reasonable to consider.

5. Asteroseismology information: this should be available if the target has been
observed at short-cadence by Kepler or CoRoT. It will provide robust stellar
parameters, which are essential to obtain a precise planet mass determination.

6. Previous follow-up: check the literature to see if this system has already been
followed-up, and if this is the case, to assess whether additional RVmeasurements
would be useful (eg., to determine the mass to a better precision, or to look for
additional companions).

2.3.2 Generalised Lomb–Scargle Periodograms
and Autocorrelation Functions

118 Kepler candidates survived these cuts. In order to identify activity selection cri-
teria for these candidates, I computed Lomb–Scargle periodograms and autocorrela-
tion functions (Lomb 1976; Scargle 1982; Edelson andKrolik 1988; Zechmeister and
Kürster 2009) for the Kepler lightcurves of each star. I concatenated the lightcurves
all the quarters together by dividing by the inverse variance weighted mean flux level
for each quarter. This procedure is approximate but works well, as confirmed by
visual inspection of a few lightcurves (see Fig. 2.11).

In the next two sections, I outline the concepts and main equations of the Lomb–
Scargle periodogram and autocorrelation techniques.

2.3.2.1 Generalised Lomb–Scargle Periodogram

A natural first step as a planet hunter is to make a periodogram of the data, to get
a first feel for what is in it. Most activity-induced signals will show some quasi-
periodicity with a recurrence timescale related to the stellar rotation period, Prot

and/or its harmonics. The rotation of the star modulates both the lightcurve and RV
curve.
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Fig. 2.11 Revealing the temporal behaviour ofKeplermain sequence stars, through autocorrelation
(time lag versus power) and Lomb–Scargle periodogram (frequency versus power) analyses of high-
precision Kepler photometry, spanning all quarters of data. Note that all three lightcurve plots are
on the same scale, ranging from −3 to +3mmag. The plots were made using Andrew Collier
Cameron’s dcfpgm.f code

The following method is based on the techniques proposed by Lomb (1976),
Scargle (1982) and Zechmeister and Kürster (2009). We can fit a sinusoid to our
dataset:

mi = A cos(ωti) + B sin(ωti) + C, (2.14)

where A and B are the amplitudes of the signal, C is an offset from zero, mi is the
fit to the photometric or RV data yi at time ti and ω = 2π

Prot
is the angular frequency

associated with Prot.
The parameters A, B and C are calculated using iterative optimal scaling (also

known as weighted least squares):
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Â =
∑

i [yi − Ĉ − B̂ sin(ωti)] cos(ωti) wi
∑

i cos
2(ωti) wi

, (2.15)

B̂ =
∑

i [yi − Ĉ − Â cos(ωti)] sin(ωti) wi
∑

i sin
2(ωti) wi

, (2.16)

and

Ĉ =
∑

i [yi − B̂ sin(ωti) − Â cos(ωti)] wi
∑

i wi
. (2.17)

The inverse-variance weights, wi are defined in Eq.2.5. The three parameters are
summed over all data. The operation is repeated until a convergence threshold is
met, for example when the change in each parameter is less than a given fraction of
their associated uncertainty.

The right frequency is found by optimising the chi square (χ2) on a grid of
frequencies. The χ2 is defined as:

χ2 =
∑

i

[
(yi − mi)

2 wi
]
. (2.18)

The range of frequencies to be searched starts at the sidelobe frequency (dω) up to the
Nyquist frequency (ωnyq) at intervals given by the sidelobe frequency of the dataset.
These two quantities are given by:

dω = 2π

ttot
(2.19)

and
ωnyq = nπ

ttot
, (2.20)

where n is the number of points in the dataset, and ttot is the total span of the
observations. Care should be taken to have both frequencies in the same units
(rad · s−1 or deg · sec−1).

Zechmeister and Kürster (2009) provide slightly different equations that are very
easy to implement andquick to compute.Wecan also calculate false alarmprobability
levels for each signal. They are a measure of how likely it is for a signal with a given
power to be caused purely by noise. Refer to Cumming (2004) and Collier Cameron
et al. (2009) for a recipe on how to implement them.

2.3.2.2 Autocorrelation Function

Another way to determine the stellar rotation period is to compute the autocorrelation
function of the data (Edelson and Krolik 1988). This technique provides us with
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much more than just the period of the main signals in the data; an autocorrelation
function is a star’s activity identity card. The autocorrelation function conveys the
same information as the Lomb–Scargle periodogram: with one glance at it we can
tell the rotation period, whether the star has spots, how long they live for, how fast
they decay, if there are many active regions, etc. The concept is the following: we
take two copies of our dataset and shift them against each other by a small time
interval τ at each step. The discrete autocorrelation of a dataset y (observation times
t, uncertainties σ) is equal to (Edelson and Krolik 1988):

ki,j = (yi − ŷ) (yj − ŷ)
√

σ2
i σ2

j

, (2.21)

where ŷ is the inverse-variance weighted average of the dataset, defined as:

ŷ =

n∑

i=1
yi/σ2

i

n∑

i=1
1/σ2

i

. (2.22)

The autocorrelation function can be normalised to 1 by dividing by its maximum.
Each pair of points i, j is associated with the time lag:

�ti,j = tj − ti. (2.23)

For best results, the coherence length τ should be at least a few times longer than
the spacing of the data, so that the autocorrelation looks smooth, but short-period
signals longer than τ are still resolved.

For faster computation, only the positive (or negative) side of the autocorrelation
function can be calculated and then simply mirrored onto the opposite side for plot-
ting. The main recurrence timescale (in our case, the stellar rotation period) is the
time lag of the centre of the first sidelobe of the autocorrelation function. A parabola
can be fitted to this sidelobe in order to determine a more precise value, for example
via iterative optimal scaling.7

2.3.2.3 Application to Kepler Lightcurves

Although I did implement my own versions of these techniques, for this target selec-
tion work I used AndrewCollier Cameron’s code for discrete correlation functions &
periodograms (dcfpgm.f), which I adapted for my own purposes. Figure2.11 shows

7SeeAdvancedDataAnalysis course byKeithHorne online at http://star-www.st-and.ac.uk/~kdh1/
ada/ada.html (link valid as of March 2015). The method of optimal scaling is explained in his notes
from Lecture 5. His draft textbook “The Ways of Our Errors” is a gold mine to the astronomer
looking for optimal data analysis methods.

http://star-www.st-and.ac.uk/~kdh1/ada/ada.html
http://star-www.st-and.ac.uk/~kdh1/ada/ada.html
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lightcurves, Lomb–Scargle periodograms and autocorrelation functions for three
example stars, with a short description of what we can learn about the behaviour of
each star based on this information. In addition, I retrieved the following information:

• Two measures of the stellar rotation period—taken to be the strongest periodic
signal identified in the Lomb–Scargle periodogram, and the time lag between the
two main peaks of the autocorrelation function.

• The root mean scatter (rms) of the Kepler lightcurves, obtained after removing
points lying more than 5-sigma beyond average in order to remove any transits.

• The mean photometric error, σav, defined as the mean relative error in the Kepler
photometry.

• The ratio between the amplitude of the main peak of the autocorrelation function
(at zero time-lag) and the next highest peak: it tells us about the lifespans of active
regions on the stellar surface.

• TheF8 statistic defined byBastien et al. (2013), in units of parts per thousand (ppt).
It corresponds to the rms of the lightcurve over an 8-h timescale. It is computed by
taking the rms scatter in the photometry residuals after applying a boxcar filter of
width 8h. This scatter is caused by granulation and is known as the “8-h flicker”.
Faint stars will naturally display more variability in F8, which we correct for by
applying the relation used by Bastien et al. (2013), based on the Kepler magnitude
Vkepler of the star (available in the Kepler input catalogue):

log10 F8 = −0.03910 − 0.67187Vkepler + 0.06839V 2
kepler − 0.001755V 3

kepler

(2.24)

• log g: I deduced this value from the F8 statistic, using the relationship established
by Bastien et al. (2013):

log10 g = 1.15136 − 3.59637 log10(F8) − 1.40002 log10(F8)
2 − 0.22993 log10(F8)

3

(2.25)
It is useful to check the value of the log g as it gives an indication ofwhether the star
is on the main sequence or if it is a giant or sub-giant star. Giants and sub-giants
have lower surface gravity, bigger atmospheric scale heights, and hence fewer
granules. The uncertainty in the number of granules on the stellar surface at any
time is proportional to the square root of the number of granules (see Sect. 2.1.3),
so the fractional uncertainty, and hence the noise (quantified in the F8 statistic),
goes up when there are fewer granules (Lindegren and Dravins 2003).

The plots in Fig. 2.12 illustrate the general behaviour of all 118 stars as a sample.

Stellar rotation periods The rotation periods obtained via both methods are plotted
against each other in panel (a) of Fig. 2.12. They are in good agreement overall. In
a few cases, especially at long periods, the period identified via Lomb–Scargle is
twice as long as that of the autocorrelation. Period halving is a common problem
at times when there are active regions on opposing hemispheres of the star. In such
cases the autocorrelation sidelobes often alternate in amplitude, making it easier to



2.3 RV Target Selection Based on Photometric Variability 39

Fig. 2.12 Photometric variability characteristics of our stars as a sample. Panel a periods obtained
through both methods plotted against one another; panel bMain-peak-to-first-sidelobe of autocor-
relation function ratio, as a function of photometric rms; panel c F8 statistic plotted versus mean
photometric error, σav; panel d log g values derived from the F8 statistic. (The stars with zero
Lomb–Scargle period or zero F8 statistic are errors arising from the code, and further investigation
would be required to solve this.)

identify the true period. I decided to use the stellar rotation period obtained from the
autocorrelation method.

Care should be taken, however, mainly for two reasons:

• The majority of the stars in our sample show very little photometric variations;
many stars display photometric rms of order 0.1 or even 0.01 parts per thousand
(ppt), as seen in panel (b) in Fig. 2.12. This means that it can be difficult to measure
the rotation period reliably, even through the autocorrelation method which will
exhibit weak sidelobe amplitudes.

• The lightcurves were reduced with Kepler’s PDC-MAP pipeline (Stumpe et al.
2012),which is a decorrelationmethoddesigned to remove patterns of instrumental
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origin that are common to all stars in a given field of view of the Kepler CCD.
It should not suppress signals of astrophysical origin, particularly variations due
to the star’s rotation and activity on short timescales. However, the Kepler Data
Release 21 Notes caution that the PDC-MAP lightcurves should not be used to
look for periodic signals longer than 20 days, as the pipeline erases long-term
trends. On the other hand, McQuillan et al. (2014) and others have shown that it is
possible to obtain reliable stellar rotational periods for a large number of Kepler
stars.

Active region lifetimes The plot in panel (b) of Fig. 2.12 shows that there is a
correlation between the amplitude of the star’s photometric variations (rms of the
lightcurve) and the lifespan of active regions, which indicates that large active regions
live longer. Starspots are thought to decay throughdiffusion,which takes place around
the edge of the spots: larger spots, which have a smaller perimeter-to-area ratio will
thus take longer to diffuse away (see references in Sect. 2.1.5.1).

2.3.3 Selection Criteria for “Magnetically Manageable” Stars

I settled on the following selection criteria:

1. Eliminate stars with a rotation period of less than 10 days, as we do not want to do
RV follow-up on fast rotators (the cross-correlation profile would be very broad
and yield a poorly-constrained RV measurement).

2. Require the rms of the lightcurve to be less than 0.001 mag. This seemed like a
reasonable threshold beyond which the star is showing a lot of modulation from
starspots coming in and out of view.

3. In order to eliminate stars with anomalously high levels of granulation noise, I
require:

(F8 − 0.023)

1000σav
< 0.5. (2.26)

The value 0.023 mag corresponds to the flicker “floor” seen in panel (c) of
Fig. 2.12; an F8 value below this limit indicates that the star is faint enough for the
photon noise to dominate photometric variations induced by granulation. A high
F8 value makes it harder to average out the RV variations caused by granulation,
even if we make a couple of observations separated by two hours. Indeed, most
Kepler targets are so faint that we need to make 1800-s (30min) exposures, and
we therefore cannot really afford to take two per night.

4. Rotational and orbital timescales: it is more difficult to disentangle the orbit of a
planet if its orbital period is close to the stellar rotation Prot or its first harmonics.
I discarded cases where the orbital period is within 2 days of Prot, Prot/2, and
Prot/3. I chose an interval of 2 days to be on the safe side since the stellar periods
may not be very accurate.
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5. It is also a problem if the orbital and stellar rotation timescales are too similar. I
discarded cases where the rotation period was less than twice the orbital period.

6. However, if the timescales are very dissimilar, we can consider more active stars,
i.e. a largerrms. For these systemswe can apply the nightly offsetmethod detailed
in Sect. 2.2.2. I therefore included targets for which the stellar rotational period
is at least 10 times longer than the planet’s orbital period, even if the photometric
rms was greater than 0.001 mag.

7. Distinguishing main sequence stars from giants: I require all viable candidates
to have a log g greater than 3.5. This cutoff value is somewhat arbitrary, and it
would be interesting to delve further into this to refine this criterion. The F8 and
log g are shown plotted against each other in panel (d) of Fig. 2.12.

2.4 Concluding Note: From Photometric to Radial-Velocity
Variations

The next step would be to combine some of these indicators to predict the amplitude
of activity-induced RV variations we might expect. The FF ′ method of Aigrain et al.
(2012) (explained in Sect. 2.2.5) gives a recipe for doing exactly this. It does not fully
account for the effect of faculae on the suppression of convective blueshift, or effects
that have no photometric signature, however, so it is likely to largely underestimate
the amplitude of activity-induced RV variations (seemywork on CoRoT-7 in Chap. 4
and Haywood et al. 2014).

Based on RV data for CoRoT-7, Kepler-10 and Kepler-78 (see Chap.4), as well
as the findings of Aigrain et al. (2012), we can infer a simple rule of thumb: 1 mmag
of photometric rms results in 2m · s−1 of activity-induced RV variations. Of course,
the amplitudes are not the whole story; Bastien et al. (2014) found that the Fourier
components of the lightcurve provide important clues about the complexity of the
activity-induced RV variations. In this perspective, decoding the temporal structure
of a star’s lightcurve is a natural step towards understanding stellar RV variability.

The frequency structure of stellar signals reflects the character and personality of
a star. We can use it to build a model for activity-induced RV variations, as I will
show in the next chapter.
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Chapter 3
A Toolkit to Detect Planets Around
Active Stars

In this chapter, I present a recipe to detect exoplanet orbits in RV observations in
the presence of noise arising from stellar activity. I start by introducing Gaussian
processes, which are a powerful and elegant way to model correlated noise. I will
start from the very basics of Gaussian distributions, leading up to how I incorporate
them in my model to account for stellar activity signals. I then present the model that
I use to fit RV observations, and describe the Monte Carlo Markov Chain procedure
that I apply to determine the best-fitting parameters of this model. Finally, I present
the Bayesian model selection technique of Chib and Jeliazkov (2001) that I have
implemented to estimate the most likely number of planets present in the system and
therefore choose the most appropriate model.

3.1 Gaussian Processes

The first Sections (up to Sect. 3.1.1.5) of this introduction to Gaussian processes are
based on a lecture given by Prof. David MacKay, from the Engineering Department
at the University of Cambridge.1 I am very thankful to him as it was only bywatching
his video that I finally understood what Gaussian processes really are! I thoroughly
recommend watching it.

This chapter uses material from, and is based on, Haywood et al., 2014, MNRAS, 443, 2517.

1This lecture is posted online at http://videolectures.net/gpip06_mackay_gpb/ (link correct as of
March 2015).

© Springer International Publishing Switzerland 2016
R.D. Haywood, Radial-velocity Searches for Planets Around Active Stars,
Springer Theses, DOI 10.1007/978-3-319-41273-3_3
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3.1.1 Definition

In statistical terms, a Gaussian process (GP) is defined as an n-dimensional random
process, such that the joint probability distribution drawn from this process is a
Gaussian distribution in n dimensions (Rasmussen and Williams 2006). Let us first
look at a 1-dimensional Gaussian distribution.

3.1.1.1 1-Dimensional Gaussian Distribution

Any random process can be described by a probability distribution function. In the
natural world, many processes follow a probability distribution function that is well
described by a Gaussian “bell” shape (shown in Fig. 3.1). Imagine that we are on a
field trip to measure the weights of blue tit birds. Before we catch a bird, we won’t
know exactly how much it weighs, but we can still take a pretty good guess because
we know that the average weight of a tit is about 11 grams and that most blue tits
weigh between 9 and 13 grams. Mathematically, we can write the probability P of
measuring the blue tit’s weight, y, as:

P(y) = 1

σ
√
2π

exp− 1
2

(
y−μ

σ

)2

. (3.1)

This is a Gaussian distribution centered at μ (=11 grams), with a standard deviation
σ (=2 grams). Since we have not weighed the blue tit yet, this is a prior distribution.
μ is the weight we are most likely to measure. Weighing birds, i.e. collecting data,
will transform our prior beliefs into a posterior distribution.

Fig. 3.1 1-dimensional
Gaussian distribution, with
mean μ and standard
deviation σ
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3.1.1.2 2-Dimensional Gaussian Distribution

Let’s now imagine thatwe are alsomeasuring thewing span of our blue tits.We expect
it to be between 17 and 20cm and to follow a bell-shaped distribution. We are now
considering two variables, y1 (weight) and y2 (wing span). These two characteristics
are intimately linked to each other, as bigger blue tits will weigh more and have a
larger wing span: y1 and y2 are correlated with each other. This means that if we
know the value of one, we will be able to take a better guess at the value of the
other. Statistically, their probability distributions are joint together and form a 2-
dimensional Gaussian distribution (which you can imagine as a hat shape). We can
picture it as in Fig. 3.2.

The shape of the contours depends on how correlated the two variables are with
each other; for example, they are weakly correlated in Fig. 3.2a, while they are
strongly correlated in Fig. 3.2b. The quantitative relationship between these two
variables (eg. y2 = 2y1 or y2 = y1 + 5) is not (yet) relevant. We shall leave this
information encoded in a matrix K, which we treat as a “black box” for the time
being.

In addition to wondering how precisely we can guess the wing span of a blue
tit before we catch it, we can now ask: how much more precise will our guess of
the wing span be after we have weighed it? Before we weigh the blue tit and thus
measure y1, the wing span y2 will have a wide range of probable values. After we
have measured y1, the likely possibilities for y2 narrow down to the range shown
by the blue error bars in Fig. 3.2. If we now wish to predict y2, knowing y1, the
values of y2 will follow a Gaussian distribution centered at point μ2. Note that if

Fig. 3.2 2-dimensional Gaussian distributions, for two weakly (panel a) and strongly (panel b)
correlated variables, with 1, 2 and 3-σ contours drawn in red (Note the error bars are not drawn to
scale with respect to the bivariate distributions.)
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Fig. 3.3 The same 2-dimensional Gaussian distribution, displayed in the traditional (panel a) and
new (panel b) representation

we had measured y1 to be any other value, the most likely value of y2, that is μ2,
would always fall on the straight line drawn on the plot. In other words,μ2 is a linear
function of y1.2

As can be seen in Fig. 3.2b, in which the correlation between the two variables is
stronger, the standard deviation of the distribution of y2 after we have measured y1
(which is now a posterior distribution) is much smaller than in the case of a weak
correlation between the two parameters.

3.1.1.3 New Representation

In addition to the weight and wing span, we could measure as many features of our
blue tits as we like, but plotting the joint distribution between more than 2 variables
as in Fig. 3.2 would become tedious. Figure3.3 illustrates how we can represent the
same 2-dimensional Gaussian distribution of Fig. 3.2 in a different, simplified view.
Imagine that we have now caught five birds (in statistical terms, we have drawn
5 samples from the joint prior distribution of the two variables “wing span” and
“weight”). In the traditional view shown in panel (a), the set of measurements for
each bird is marked with a dot; in the new representation in panel (b), it is represented
by a line. In this new visualisation, the distributions of each variable y1 and y2 can
be imagined standing vertically out of the page, centered at points μ1 and μ2.

2Remember this for later; it provides insight on the form of Eq.3.16.
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3.1.1.4 n-Dimensional Gaussian Distribution

In this new representation, picturing a Gaussian distribution with more than two
dimensions becomes possible. An example of a joint 6-dimensional distribution is
shown in Fig. 3.4. In panel (a), we draw several samples from the prior distribution;
each of the coloured lines represents one sample, and tells us the value of each of the
6 variables. If we measure the value of one variable, such as in panel (b), this narrows
the posterior distribution of the other variables, and so on. This only happens because
the variables are all correlated with each other, and therefore depend on each other.

Each time we measure one of the variables of the process we are consider-
ing, we are making a cut through the n dimensional probability distribution space:
this cut therefore has n-1 dimensions. This is analogous to taking a cut through a
3-dimensional sphere, and obtaining a 2-dimensional disc. If we measure all the

Fig. 3.4 A 6-dimensional Gaussian distribution. awe draw 5 samples from the prior distribution—
no measurements have been made yet; b we measure variable 3; c we measure all the variables
except variable 5; d all the variables have been measured
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values of all the variables but one, we are left with a 1-dimensional Gaussian dis-
tribution which tells us about the behaviour of this last, unknown variable (panel
(c)).

The nature of the correlation between yi and y j determines how little or howmuch
the posterior distribution of y j changes once we have measured yi , and vice versa.
Also, this correlation doesn’t have to be the same between two other variables, say
yi and yk . The correlation between each pair of variables of the process plays a key
role in determining the process.

3.1.1.5 A Gaussian Process

Let’s go back to Fig. 3.4, and use our imagination once more. If we just changed
the labels on the axes, say the horizontal axis became “time”, and the vertical axis
became “flux”, or “radial velocity”—the line in the plot suddenly looks like a fit to
a set of observations! Yes, we can use a multi-dimensional Gaussian distribution to
fit a dataset.

A Gaussian process is a non-parametric approach to fitting data. It is a Bayesian
method. In the frequentist statistics approach, we start with a theory that we take
for granted and we ask ourselves: what is the probability that we will measure a
given value? We decide on the form of the model before we even start considering
our observations, by specifying a parametric model, for example a sine function. Of
course, such a model can, to some extent, be tailored to fit the observations; in the
case of a sine function, we can determine the period, phase and amplitude that will
provide the most optimal fit. The final model, however, will always be a sine curve
and this may be a limitation in itself.

In the Bayesian world, we start with a dataset and use it to test our theory: what is
the likelihood that this model is correct?Our model is non-parametric, which means
that we do not impose the form of the model before we consider the observations;
instead, we let the observations themselves determine the shape of the model. The
only prior assumption that wemake is about the way in which the data are correlated.
We are making fewer prior assumptions and this gives us more freedom than having
a model with a pre-determined shape.

We shall now ask: how do we define the correlations between points of a phys-
ical process? This is where the entity K, which I briefly mentioned back in the
2-dimensional case, comes into play!

3.1.2 Covariance Matrix K

For a dataset with n observations, K is an n × n matrix, which we refer to as the
covariance matrix. Each elementKi, j gives the covariance between two dimensions
yi and y j : this is a measure of how much these two variables change together.
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There are two options possible:

• The two variables are independent; if one changes, the other one does not. They
are not correlated with each other. This is known as “white” noise.

• The two variables are dependent on each other; changing one will affect the other,
because there is a correlation between them. This is commonly referred to as “red”
noise.

3.1.2.1 Independent Data (White Noise)

Figure3.5 a represents the covariance matrix of a set of 4 data points yi , all indepen-
dent from each other. Down the diagonal, we have i = j , so the entries correspond
to the covariance of each point with itself; this is simply their variance, σ . In general,
σ incorporates uncertainties induced by instrument systematics, weather conditions,
etc.—it is just the error bar of the data. Because we are considering a case in which
the observations are uncorrelated, all the non-diagonal elements are zero.

We can allow the variance to be different for each data point (σi ), in which case
the covariance matrix looks like in Fig. 3.5b.

Assuming a Gaussian distribution, the probability distribution P of a data point
yi can be written as:

P (yi ) = 1

σi

√
2π

· exp
[

− (yi − μi )
2

2σ 2
i

]

. (3.2)

The joint probability distribution of all data points is:

P (y) =
n∏

i=1

P (yi ), (3.3)

Fig. 3.5 Covariance matrix corresponding to: a white noise with a constant variance, b white noise
with varying variance, c red noise and constant variance, d red noise and variable variance
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and is referred to as the likelihood L. Expanding this expression, we obtain:

L =
(

1

2π

)n/2

·
(

n∏

i=1

1

σi

)

· exp
[

−
n∑

i=1

(yi − μi )
2

2σ 2
i

]

. (3.4)

We see that the sum in the exponential term corresponds to the chi-squared value
(χ2) of the data, so we have:

L =
(

1

2π

)n/2

·
(

n∏

i=1

1

σi

)

· exp
(

−χ2

2

)

. (3.5)

We obtain the best fit parameters by maximising this function, i.e. by minimising
the χ2.

3.1.2.2 Correlated Data (Red Noise)

We now consider data that are correlated with each other. The corresponding matrix
is shown in Fig. 3.5c. The diagonal elements still represent the variance of the data,
but some of the non-diagonal elements are nownon-zero. The probability distribution
function (i.e. the likelihood) is:

P (y|K) =
(

1

2π

)n/2

· 1√
detK

· exp
[

−1

2
(y − μ)T K−1(y − μ)

]

, (3.6)

where detK is the determinant ofK. This is just a generalised expression of Eq.3.4.
In the case of white noise, the covariance matrix is equal to:

K = σ 2I, (3.7)

where I is an n × n identity matrix. This reduces to a 1-dimensional array of size n,
and hence leads to a simplified formulation of the likelihood that is proportional to
the χ2. The χ2 can therefore only be used in the special case where the noise in our
data is completely white.

Otherwise, we must use the generalised expression for L:

L =
(

1

2π

)n/2

· 1√
detK

· exp
[

−1

2
(y − μ)T K−1(y − μ)

]

, (3.8)

where the 2π term is a normalisation constant and the determinant of K acts as a
penalty term for more complex models (Occam’s razor).

We usually compute lnL:

lnL = −n

2
ln(2π) − 1

2
ln(detK) − 1

2
(y − μ)T K−1(y − μ). (3.9)
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3.1.3 Covariance Function k(t, t ′)

Each element of the covariance matrix K is determined by a covariance function
k(t, t ′):

Ki, j = k(t, t ′), (3.10)

where t and t ′ are associated with data points i and j .
Here are a few commonly used functions:

1. White noise:
k1(t, t

′) = θ2
1 · δt,t ′ . (3.11)

The term δt,t ′ is a Dirac delta function scaled according to the magnitude θ1 of the
white noise (usually given by σi ). This is the simplest kind of covariance function.
It leads to a diagonal matrix K and is almost always used, in combination with a
more complex function.

2. Square exponential (Fig. 3.6a):

k2(t, t
′) = θ2

1 · exp
[

− (t − t ′)2

θ2
2

]

. (3.12)

The hyperparameter θ1 gives the maximum amplitude of the covariance between
two points. The amplitude of the correlation falls exponentially over a (time)scale
θ2. This is the classic case in which we assume that points close to each other are
more dependent on each other.

3. Periodic oscillation (Fig. 3.6b):

k3(t, t
′) = θ2

1 · exp
[

− sin2
(

π(t − t ′)
θ3

)]

. (3.13)

This kernel is ideal for a truly periodic, coherent signal, with a recurrence
timescale θ3.

Fig. 3.6 Different types of covariance functions: a square exponential, b periodic, and c quasi-
periodic. The hyperparemeters are: θ1 = 1, θ2 = 35, θ3 = 20, θ4 = 0.5
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4. Quasi-periodic oscillation (Fig. 3.6c):

k4(t, t
′) = θ2

1 · exp
⎡

⎣− (t − t ′)2

θ2
2

−
sin2

(
π(t−t ′)

θ3

)

θ2
4

⎤

⎦ . (3.14)

This kernel, of maximum amplitude θ1, combines a square exponential term with
a periodic variation at a fixed period θ3. The quasi-periodicity evolves over a
timescale θ2. The hyperparameter θ4 determines the amount of high frequency
structure of the fit. The relative importance of the decay and periodicity terms in
the exponential is dictated by the relative sizes of θ2 and θ4.

The parameters θ j of the covariance function are known as the hyperparameters of
the Gaussian process. In the classical statistics world, we fit data by determining the
optimal values of the parameters of our (parametric) model, for example the period,
phase and amplitude of a sine function; we find the best parameters in “data space”.
In the Bayesian world, when we are fitting data with a (non-parametric) (Gaussian)
process,wefind the optimal values of the hyperparameters of the covariance function;
we determine the best parameters in “correlation space”, or “covariance space”.
Doing so will give us much more freedom—we shall find out more as we go along!

The form of the covariance function is the main prior assumption we will make
(the other priors being those imposed on the hyperparameters), so we need to think
carefully about our choice—this is the subject of Sects. 3.1.4 and 3.1.5. We can also
use Bayesian model selection tools to compare models with different covariance
functions, in order to decide which one provides the best fit to the data, but is still
the simplest function possible. For more detail on model selection, see Sect. 3.3.

3.1.4 Temporal Structure and Covariance

The shape of the covariance function is tightly linked to the temporal structure of the
physical phenomenon that we are modelling. The perfect covariance function would
look very similar to the autocorrelation function of the data.3 This is illustrated
in Fig. 3.7 for a star’s lightcurve. The lightcurve displays strong variations due to
starspots drifting across the stellar disc as the star rotates. Some starspots remain
from one rotation to the next, making it easy identify the rotation period even in
the lightcurve itself. The autocorrelation of the lightcurve shows a clear peak at the
rotation period—it is not as strong as the peak at zero time lag, reflecting the evolution
of spots over time. The autocorrelation does show some additional structure, but to
a first approximation, it is well represented by a quasi-periodic covariance function
(see Case 4 in Sect. 3.1.3).

3They cannot be completely identical since the covariance functions used with Gaussian processes
are always positive definite, whereas the autocorrelation function oscillates about zero. They are
very similar though (see Fig. 3.7), and it would be interesting to find out how they are related.
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Fig. 3.7 From left to right the CoRoT-7 2012 lightcurve, its autocorrelation and the quasi-periodic
covariance function used to fit the lightcurve

This intrinsic property of the covariance function sets the physical justification
for using Gaussian processes to model activity-induced RV signals.

3.1.5 Gaussian Processes for Stellar Activity Signals

[...] the ‘jitter’ formalism is limited, because it treats the activity signal as an independent,
identically distributed Gaussian noise process.
S. Aigrain et al. (2012)

Time dependent photometric and spectroscopic observations of stars tell us that
activity-driven variations are not random or stochastic in nature. They follow a pat-
tern, modulated by the star’s rotation, which evolves according to the growth and
decay of magnetically active regions on the stellar surface. The RV variations of
a star are a tangled mess of activity and planetary signals, but in photometry, the
activity and planetary signals are very distinct, and planet transits can easily be
removed from the activity variations. As I have shown in Chap.2, each star has its
own unique behaviour. This temporal “character” is encoded in the periodogram or
autocorrelation function of the star’s lightcurve.

Due to their ability to memorise patterns of a given frequency structure, Gaussian
processes are an ideal tool to model activity-induced variations. A quasi-periodic
covariance function is an appropriate choice in this context. The evolution timescale
corresponds to the average lifetime of starspots on the stellar photosphere, and the
recurrence timescale is the stellar rotation period.Wewant the covariance function to
go to zero for up to half of the stellar rotation cycle (assuming that the stellar rotation
axis is inclined to 90◦ of the line of sight, which is the case for most transiting
systems), to reflect the fact that we do not know what is happening to the surface
features when they are facing away from us. Panel (c) of Fig. 3.6 shows clearly that
the optimisation algorithm has selected a value of θ4 that reduces the value of the
covariance function to zero for roughly half of the stellar rotation cycle.

We can determine the hyperparameters of the covariance function using the star’s
off-transit lightcurve, since it shares the frequency structure of the star’s magnetic

http://dx.doi.org/10.1007/978-3-319-41273-3_2
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activity. This is based on the assumption that the frequency structure of the covariance
function representing the stellar activity should be the same for both the lightcurve
and theRVcurve. TheGaussian process fitting procedure is described in the following
sections.

3.1.6 Determining the Hyperparameters θ j

We can make rough guesses for the hyperparameters using our a priori knowledge
of the phenomenon we are modelling, and this will provide a reasonable fit in most
cases. However, it is best to let the data decide for themselves, so ideally we should
use an optimisation method. In statistical jargon, determining the best hyperparame-
ters to use is a procedure known as training the GP. I use a Monte Carlo Markov
Chain (MCMC) in order to marginalise over all the hyperparameters—see a detailed
description of this procedure in Sect. 3.2. The priors and ranges I normally apply to
the hyperparameters are detailed in Table3.1. We maximise the likelihood of Eq.3.9
with respect to the hyperparameters.

Computationally, the matrix inversion required in this stepmeans that this process
is of order n3. This means that it can get very slow for large datasets, and we may
wish to consider binning the dataset we will be training the GP on (especially if it is
a short cadence lightcurve!). In my code, I invoke a Cholesky decomposition (Press
et al. 1986), which makes this equation very easy to implement. I explain how to fill
the covariance matrix in the following Section.

3.1.7 Constructing the Covariance Matrix K

Once we have determined the covariance function and its hyperparameters, we can
construct a covariance matrix for a dataset containing both red and white noise,

Table 3.1 Prior probability densities and ranges of the hyperparameters optimised via an MCMC
procedure

Parameter Symbol Prior

Amplitude θ1 Modified Jeffreys (σdata)

Evolution timescale θ2 Jeffreys

Recurrence timescale θ3 Gaussian (Prot, σProt ) or Jeffreys (if Prot not known)

Relative importance of
evolution versus periodicity

θ4 Uniform [0,1]

The knee of the modified Jeffreys prior is given in brackets. In the case of a Gaussian distribution,
the terms within brackets represent the mean x̄ and standard deviation σ . The terms within square
brackets stand for the lower and upper limit of the specified distribution; if no interval is given, no
limits are placed
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according to Eq.3.10. In my model, I use a quasi-periodic covariance function (Case
4 of Sect. 3.1.3), with some additional white noise given by the error bars of the data:

k(t, t ′) = θ2
1 · exp

⎡

⎣− (t − t ′)2

θ2
2

−
sin2

(
π(t−t ′)

θ3

)

θ2
4

⎤

⎦ + σ 2
i · δt t ′ . (3.15)

For each observation at time t , we calculate its distance in time to all the other
observations of the dataset. In this way we can build a matrix whose values tell us
about the degree of correlation between each point at time t and all other points at
times t ′.

3.1.8 Fitting Existing Data and Making Predictions

Gaussian processes are amachine learning tool: the covariance function is the “mem-
ory” of the GP, which learns from the data itself. The more data we have, the better
we can determine the hyperparameters (see Sect. 3.1.6); by doing this, we are con-
ditioning the GP. In turn, having better determined hyperparameters leads to a more
probable fit to the data.

In this perspective, the covariance function not only allows us to determine the
optimal fit to our observations; it also provides a means of interpolating the fit for
times at which we do not have observations. In this case, we are asking how likely
it is to measure a given value at a given time. If we make an observation at time ti ,
what is the range of possibilities at time t j?

We already know the covariance matrix K of the n existing data points y =
(y1, y2, ..., yn), as it is governed by the covariance function that we have already
chosen and whose hyperparameters we have already determined. It has a size n × n.
These are the training points of the GP.

We define the covariance matrix Kpp for the m test points at times t p =
(tp1, tp2, ..., tpm) at which we want to predict the data. This matrix is populated
with the same covariance function, and has dimensions m × m.

The covariance matrixKp of the cross-terms has to be evaluated too, as it will be
used to calculate the errors on y

p
. It has dimensions m × n.

The predicted data y
p
are given by the mean of the predictive distribution, which

is calculated as follows:

y
p

= Kp.K−1 · y. (3.16)

If we are simply determining a fit to our data (i.e. we are not “predicting” data at
new observation times), then m = n so Kp is of size n × n, and Kpp = K. Note that
y
p
is indeed a linear function of y!



58 3 A Toolkit to Detect Planets Around Active Stars

The errors associated with y
p
are found by calculating the covariance of the

predictive distribution, and then taking the square root of the diagonal elements of
this matrix:

σ yp =
√
diag[Kpp − Kp · K−1 · Kp

T ] (3.17)

We can interpret this last equation as taking the covariance matrix of the predicted
times and “removing” the parts where the predicted times and measured times over-
lap: at these points, there is less uncertainty so the error is smaller.

Computational trick If you have already determined your hyperparameters, speed
up your code by predicting yourGP for one point at a time only; thisway,Kp becomes
a 1-dimensional vector, and Kpp reduces down to a scalar. Now you only need to
solve one linear equation instead of doing a full Cholesky decomposition, which can
save a lot of CPU time! Create a little subroutine that does this and simply call it m
times.

3.1.9 A Word of Caution

It is good to remember that samples from the predictive distribution don’t behave
like the mean of the predictive distribution: the error bars σ yp are just as important
as the predicted data y

p
themselves. The choice of covariance function is crucial—

it is important to first think about the physical phenomena or instrumental sources
responsible for the noise in the data, and to choose covariance functions that are
appropriate for each source. At the end of the day, Gaussian processes are just like
any other model: you get nothing more out than what you put in!

3.1.10 Useful References

Here is a list of references I have compiled over recent months, with help from others
and which I hope you will in turn find useful.

• The following are milestone papers that have brought Gaussian processes to the
field of exoplanets:

– Gibson et al. (2011) and Czekala et al. (2014) introduced GPs to transmission
spectroscopy for the study of planetary atmospheres;

– Foreman-Mackey et al. (2015), Crossfield et al. (2015), Foreman-Mackey et al.
(2014), Ambikasaran et al. (2014), Aigrain et al. (2015) andBarclay et al. (2015)
harnessed the power of machine learning to detrend Kepler and K2 lightcurves;

– Baluev (2013), Haywood et al. (2014) and Grunblatt et al. (2015) applied GPs
to RV studies;



3.1 Gaussian Processes 59

– Roberts et al. (2012) is not a paper specific to exoplanets but it provides a very
clear introduction to GPs.

The use of GPs in our field is growing fast; this is only a small selection of papers
and is in no way exhaustive.

• C. E. Rasmussen andC.K. I.Williams,Gaussian Processes forMachine Learning,
the MIT Press, 2006, ISBN 026218253X., 2006 Massachusetts Institute of Tech-
nology (online: www.GaussianProcess.org/gpml). This is the classic reference in
which you will find all the equations and statistical jargon.

• If you wish to develop your GP intuition, here is a fantastic lecture on the nature
of Gaussian processes by Prof. David MacKay, from the Engineering Department
at the University of Cambridge. The first Sections of this introduction to Gaussian
processes are based on his lecture. I thoroughly recommend watching it! http://
videolectures.net/gpip06_mackay_gpb/

• João Faria, from the Institute of Astrophysics and Space Sciences in Porto, has
written a Fortran implementation of GPs, integrated in a platform for the analysis
of RV data. The code is available at github.com/j-faria/OPEN.

• Daniel Foreman-Mackey at the department of Astronomy in New York University
has written a lot of useful code in Python and C++, and has made it publicly
available at: http://dan.iel.fm/research/.

• Finally, Dr. Suzanne Aigrain and her group have given many talks and posters
about GPs, and some of their slides can be found online.

3.2 Monte Carlo Markov Chain (MCMC)

In this part of the chapter, I describe my RV model and outline the MCMC fitting
procedure that I apply to determine the best fit parameters and their uncertainties.

3.2.1 Modelling Planets

The orbit of each planet is assumed Keplerian. I model them as follows:

�RVk(ti ) = Kk
[
cos(νk(ti , tperik , Pk) + ωk) + ek cos(ωk)

]
. (3.18)

The period of the orbit of planet k is given by Pk , and its semi-amplitude is Kk .
νk(ti , tperik ) is the true anomaly4 of planet k at time ti , and tperik is the time of

4The true anomaly is “the angle between the direction of periastron and the current position of the
planet measured from the barycentric focus of the ellipse” (Perryman 2011).

www.GaussianProcess.org/gpml
http://videolectures.net/gpip06_mackay_gpb/
http://videolectures.net/gpip06_mackay_gpb/
http://dan.iel.fm/research/
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periastron. Because it is difficult to constrain the argument of periastron for planets
in low-eccentricity orbits, we introduce two parametersCk and Sk (Ford 2006). They
are related to the eccentricity ek of the planet’s orbit and the argument of periastron
ωk as follows:

Ck = √
ek . cos(ωk), (3.19)

Sk = √
ek . sin(ωk). (3.20)

The use of the square root imposes a uniform prior on ek , reducing the bias
towards high eccentricities typically seen when defining Ck and Sk as ek cos(ωk)

and ek sin(ωk) (see Sect. 3.2.4 for more detail on priors).
The eccentricity is defined as:

ek = S2k + C2
k , (3.21)

and the argument of periastron is:

ωk = tan−1(Sk/Ck). (3.22)

3.2.2 Modelling Stellar Activity

My activity model is based on a Gaussian process trained on the off-transit variations
in the star’s lightcurve, with the quasi-periodic covariance function presented in
Sects. 3.1.3 and 3.1.5.

In my analysis of the CoRoT-7 system, which was observed simultaneously with
CoRoT and HARPS in 2012 (see Chap. 4), I was able to apply the FF’ method
of Aigrain et al. (2012) to model the suppression of convective blueshift and the
flux blocked by starspots on the rotating stellar disc (see Chap.2). I then used
another Gaussian process with the same covariance properties to account for other
activity-induced signals, such as photospheric inflows towards active regions or limb-
brightened facular emission that is not spatially associated with starspots (Haywood
et al. 2014).

For the vast majority of stars, however, we cannot obtain contemporaneous high
precision photometric and spectroscopic observations—it is either too expensive or
impractical in terms of telescope time, or space-based, high precision photometry is
not available for the system considered. In these cases I use a Gaussian process on its
own to account for all activity-induced RV signals (see my analyses of the Kepler-10
and Kepler-78 systems in Chap.4).

http://dx.doi.org/10.1007/978-3-319-41273-3_4
http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_4
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3.2.2.1 Evaluating the FF’ Activity Basis Functions

In order to calculate the FF’ activity basis functions �RVrot(t) and �RVconv(t), the
flux F at the time of each RV point has to be interpolated from the stellar lightcurve.
I do this by training a Gaussian process on the lightcurve, which then allows me to
predict the flux at each time of RV observation. I also interpolate the stellar flux at
times t + �t and t − �t , in order to compute the first time derivative of the flux:

F ′(t) = F(t + �t) − F(t − �t)

2�t
. (3.23)

This allows me to compute �RVrot(t) and �RVconv(t).

3.2.2.2 An Additional Activity Basis Function

I account for activity-related signals (not modelled by the FF’ terms, if I am also
applying this method) by introducing an activity basis function that takes the form
of a GP. As I already discussed in Sect. 3.1.5, I implicitely assume that this GP has
the same quasi-periodic covariance properties as the lightcurve. The basic concept
is summarised in the diagram in Fig. 3.8. The amplitude of the GP, θ1 is a free
parameter in my total RV model (see Sect. 3.2.3). The other hyperparameters, θ2, θ3

Fig. 3.8 Diagram outlining the 4-step procedure to follow in order to absorb potential activity-
related red noise RV residuals using a Gaussian process that has the covariance properties of the
lightcurve
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and θ4 are equal to the respective hyperparameters obtained when training a GP on
the lightcurve. As the stellar activity mostly generates low-frequency signals, I refer
to this activity term as �RVrumble.

3.2.2.3 Activity Model

The total RV perturbation �RVactivity induced by stellar activity is then:

�RVactivity = A�RVrot + B�RVconv + �RVrumble, (3.24)

where A and B are scaling factors, and the amplitude of �RVrumble is controlled by
the hyperparameter θ1 of Eq.3.14.

3.2.3 Total RV Model

My final model consists of the three basis functions for the stellar activity as well as
a Keplerian for each one of npl planets:

�RVtot(ti ) = RV0 + �RVactivity(ti , A, B, 
0, θ1)

+
npl∑

k=1

Kk
[
cos(νk(ti , tperik , Pk) + ωk) + ek cos(ωk)

]
, (3.25)

where RV0 is a constant offset.

3.2.4 Choice of Priors

The priors I adopt for each parameter are given in Table3.2. A Jeffreys prior for a
parameter x has the form (Gregory 2007):

P(x |M) = 1

x ln( xmax
xmin

)
, (3.26)

where xmin and xmax are the lower and upper bounds of the parameter space that
we choose to explore. For example, we apply this prior to parameters that represent
timescales (eg. the planet orbital periods) because they follow a logarithmic scale;
one year always seems longer to a child than to an adult because it represents a much
larger fraction of their total life. In order to sample in an unbiased way, we must
sample more sparsely at long timescales than at short timescales.
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Table 3.2 Prior probability densities and ranges of the parameters modelled in the MCMC proce-
dure

Symbol Parameter Prior

Systemic RV offset RV0 Uniform

Amplitude of GP θ1 Modified Jeffreys (σRV )

Amplitude of �RVrot A Modified Jeffreys (σRV )

Amplitude of �RVconv B Modified Jeffreys (σRV )

Unspotted flux level 
0 Uniform [
max, no upper limit]

Orbital period of non-transiting planet Ptransiting Gaussian (Ptransit, σPtransit )

Transit ephemeris of non-transiting planet t0transiting Gaussian (ttransit, σttransit )

Orbital period of transiting planet Pk �=transiting Jeffreys

Transit ephemeris of transiting planet t0k �=transiting Uniform

Planet RV amplitude Kk Modified Jeffreys (σRV )

Planetary eccentricity (if transiting) etransiting Uniform [0, 1 − R�

ab
]

Planetary eccentricity (if not transiting) ek �=transiting Uniform [0, 1 − ak−1
ak

(1 + ek−1)]

Argument of periastron ωk Uniform [0, 2π ]

The knee of the modified Jeffreys prior is given in brackets. In the case of a Gaussian distribution,
the terms within brackets represent the mean x̄ and standard deviation σ . The terms within square
brackets stand for the lower and upper limit of the specified distribution; if no interval is given, no
limits are placed

A modified Jeffreys prior is given by:

P(x |M) = 1

x + x0

1

x ln( xmax
xmin

)
, (3.27)

where x0 is the knee of the modified prior. This prior acts as a uniform prior when
K << σRV , and as a Jeffreys prior for K >> σRV . I choose the knee of the modi-
fied Jeffreys prior for the semi-amplitudes of the planets to be the mean estimated
error of the RV observations, σRV . This ensures that the semi-amplitudes do not get
overestimated in the case of a non-detection. I adopt the samemodified Jeffreys prior
for the amplitudes A and B of the FF’ basis functions and the amplitude of the GP
(θ1). θ1 is naturally constrained to remain low through the calculation of L (see the
next Section). I constrain the orbital eccentricity of the innermost planet so that the
planet’s orbit remains above the stellar surface. I also impose a simple dynamical
stability criterion on the outer planets by ensuring their eccentricities are such that
the orbit of each planet does not cross that of its inner neighbour. I force the epochs of
inferior conjunction of the outer non-transiting planets (corresponding to mid-transit
for a 90◦ orbit) to occur close to the inverse variance-weighted mean date of the RV
observations in order to ensure orthogonality with the orbital periods.
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Fig. 3.9 The thought
process of an MCMC
simulation at each step

3.2.5 Fitting Procedure

The procedure is illustrated in the flow chart of Fig. 3.9. At every step of the chain,
parameters A, B, 
0, θ1, RV0, and the orbital elements of all planets are allowed
to take a random jump in parameter space. The size of the step is equal to the size
of the error bars of the parameters; at the start of the MCMC, these are mostly a
guess, but the error bars (and therefore the step sizes) will be re-evaluated during the
scaling phase, in order to ensure that the MCMC is taking steps of appropriate size.
The hyperparameters θ2, θ3 and θ4 are kept fixed as they are better constrained by
the lightcurve than the RVs.

Likelihood The FF’ activity basis functions (if used), together with the planet Kep-
lerians and RV0 are computed based on the present value of the parameters and
subtracted from the data, in order to obtain the residuals r . The GP of the activity
“rumble” term is then fitted to these residuals in order to absorb any signals with a
frequency structure that matches that of the stellar activity. The likelihood L of the
RV residuals is calculated at each step according to the following equation:

lnL = −n

2
ln(2π) − 1

2
ln(detK) − 1

2
r T .K−1. r , (3.28)

which is very similar to Eq.3.9.

Step acceptance or rejection The value of the likelihood is compared with that
at the previous step: if the likelihood is higher, it means that this set of parameters
provides a better fit than the previous set. The step is then accepted or rejected, the
decision being made via the Metropolis-Hastings algorithm (Metropolis et al. 1953).
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It allows some steps to be accepted when they yield a slightly poorer fit, in order to
prevent the chain from becoming trapped in a local Lmaximum and instead explore
the full parameter landscape. Ideally, the acceptance rate should be around 0.25; this
ensures efficient and complete exploration of the parameter space (Ford 2006).

Burn-in phase and choice of parameter starting points If the planets in the sys-
tem are not transiting and therefore do not know the orbital period and epoch, I
usually make a generalised Lomb-Scargle periodogram (Zechmeister and Kürster
2009; Lomb 1976; Scargle 1982; see Sect. 2.3.2.1) to identify the strongest signals
present in the dataset. The period, phase and approximate amplitude of these signals
can then be used as starting points for theMCMC run. If the starting parameter values
are wildly off from their true value, the MCMC simulation gets lost in obscure areas
of parameter space and never converges (or takes a very long time to do so). An
MCMC simulation should only be used in the aim of refining the optimal parameters
of a model, and to estimate their error bars in a rigorous way; it is not intended for a
first glimpse of what signals might be hiding in a dataset. In most cases, however, as
long as some thought has been given to the choice of starting points, it will not affect
the outcome of the chains. The initial burn-in phase is complete once L becomes
smaller than the median of all previous L (Knutson et al. 2008).

Scaling phaseAfter the burn-in phase, theMCMC goes through another set of steps,
over which the standard deviations of all the parameters are then calculated. This
phase allows the step sizes to be adjusted and should result in an optimum acceptance
rate for the exploration phase.

Exploration phase and chain convergence The chain goes through a final set of
steps in order to fully explore the parameter landscape in the vicinity of the max-
imum of L. This last phase provides the joint posterior probability distribution of
all parameters of the model. I check the good convergence of my code by applying
the Gelman-Rubin criterion (Gelman et al. 2004; Ford 2006), which must be smaller
than 1.1 to ensure that the chain has reached a stationary state. The best fit parameters
are determined by taking the mean of the parameter chains over this phase, and their
error bars can be obtained by calculating the standard deviations.

3.2.6 Care Instructions

It is important to look after your MCMC simulation to make sure it is in good health.
Checking the acceptance rate is one way to assess whether the chains are behaving
reasonably. If it is too low, the chains will move very slowly and will look like “slug
trails”; if it is too high, they will not be able to close in on the likelihood maximum,
and they will look like an excited bouncy bean. The parameter chains can be plotted
as a function of step number. Another useful diagnostic is to plot them against each

http://dx.doi.org/10.1007/978-3-319-41273-3_2
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Fig. 3.10 Phase plots for an MCMC simulation on the Kepler-10 data, with the model described
in Sect. 4.3 (next chapter). Points in yellow, red and blue are within the 1, 2 and 3-σ confidence
regions, respectively. The scale of each axis corresponds to the departure of each parameter from
its value at maximum likelihood. All are expressed in percent

other; such correlation plots for a healthy MCMC chain are shown in Fig. 3.10. The
plots allow you to see whether any parameters are correlated with each other, which
can considerably reduce the efficiency of an MCMC simulation. It is best practice to
orthogonalise all your parameters before running the simulations.

3.3 Model Selection with Bayesian Inference

In general, nature is more complicated than our model and known noise terms.

P.C. Gregory (2007)

I run MCMC chains for several different models and select the best one according
to the principles of Bayesian inference.

http://dx.doi.org/10.1007/978-3-319-41273-3_4
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3.3.1 Bayes’ Factor

Given a dataset y, consider two models Mi and M j . In order to determine which
one is the simplest but still gives the best fit to the data, we can compare the two
models by estimating their posterior odds ratio:

P(Mi |y)
P(M j |y) = Pr(Mi )

Pr(M j )
· m(y|Mi )

m(y|M j )
, (3.29)

where the first factor on the right side of the equation is the prior odds ratio. For the
planetary systems I usually explore, all models that are tested have the same prior
information, so this ratio is just 1. This leaves us with the second part of the right
side of the equation. It is the ratio of the marginal likelihoods m of each model, and
is known as Bayes’ factor.

Themarginal likelihoodm of a dataset y given amodelMi with a set of parameters
θi can be written as:

m(y|Mi ) =
∫

f (y|Mi , θi ) πi (θi |Mi ) dθi , (3.30)

where f (y|Mi , θi ) is the likelihood function L. The term πi (θi |Mi ) accounts for
the prior distribution of the parameters and can be incorporated as a penalty to L.
According to Chib and Jeliazkov (2001), it is possible to write:

m(y|Mi ) = f (y|Mi , θi ) π(θi |Mi )

π(θi |y,Mi )
. (3.31)

The denominator π(θi |y,Mi ) is the posterior ordinate, which we estimate using the
posterior distributions of the parameters resulting from MCMC chains.

3.3.2 Posterior Ordinate

According to Chib and Jeliazkov (2001), the posterior ordinate π̂(θi |y) can be evalu-
ated by comparing the mean transition probability for a series of M jumps from any
given θi to a reference θ∗, to the mean acceptance value for a series of J transitions
from θ∗. This can be written as:

π̂(θ∗|y) =
M−1

M∑

i=1
α(θi , θ∗|y) · q(θi , θ∗|y)

J−1
J∑

j=1
α(θ∗, θ j |y)

, (3.32)
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where α(θi , θ∗|y) is the acceptance probability of the chain from one parameter set
θi to another set θ∗. The proposal density q(θi , θ∗|y) from one step θi to another θ∗
is equal to:

q(θi , θ∗|y) = exp
[
−

K∑

k=1

(θi − θ∗
σθi

)2
/2

]
. (3.33)

The summation inside the exponential term is carried out over all K parameters of
the model, in other words over each parameter contained within a set θ .

If we choose θ∗ to be the best parameter set of the whole MCMC chain, then the
acceptance probability α(θi , θ∗|y) is 1, and Eq.3.32 is much simplified.

3.3.3 Marginal Likelihood

I obtain LML by subtracting the posterior ordinate from the maximum likelihood
value of the whole MCMC chain:

logLML = logLbest − log π̂ . (3.34)

When the number of model parameters becomes very large, the summation on the
numerator of Eq.3.32 is dominated by a relatively small fraction of points in the
Markov chain that happen to lie close to the maximum likelihood value. A large
number of trials is therefore needed to arrive at a reliable estimate of π̂ . I estimate
the uncertainty in the posterior ordinate by running the chains several times and
determining the variance empirically.

Once LML is known we can compute Bayes’ factor for a pair of models. The
posterior ordinate acts to penalise models that have too many parameters. Jeffreys
(1961) found that the evidence in favour of a model is decisive if Bayes’ factor
exceeds 150, strong if it is in the range of 150–20, positive for 20–3 and not worth
considering if lower than 3.

Concluding Note

Now that we have a recipe to detect planets around active stars, we can go look
for them! In the next chapter, I present my analysis of the CoRoT-7, Kepler-78 and
Kepler-10 systems.
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Chapter 4
Application to Observations
of Planet-Hosting Stars

In this chapter, I present the work I have done towards characterising three planetary
systems: CoRoT-7, Kepler-78 and Kepler-10. CoRoT-7 is an active star host to a
small hot Neptune and the first Earth-size exoplanet ever discovered. Kepler-78 is
an active star orbited by an extremely close-in hot, Earth-mass planet. Kepler-10 is
old and quiet, and harbours two transiting planets—one a super-Earth, the other a
rocky world the size of Neptune whose discovery challenges our theories of planet
formation. All three of these systems were first discovered via the transit method,
by the CoRoT and Kepler space missions. They were followed up with HARPS,
HARPS-N and HIRES in order to obtain a precise mass determination of the planets
present in these systems.

This chapter uses material from, and is based on, Haywood et al. (2014), MNRAS, 443, 2517 and
my own contributions to Dumusque et al. (2014), ApJ, 789, 154, and Grunblatt et al. (2015), ApJ,
808, 127.
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R.D. Haywood, Radial-velocity Searches for Planets Around Active Stars,
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4.1 CoRoT-7

Since the discovery of the super-Earth CoRoT-7b, several investigations have yielded
different results for the number and masses of planets present in the system, mainly
owing to the star’s high level of activity. This system has a long history, which I
present in the next section, before I report on my own analysis in the following
sections.

4.1.1 History of the System

In July 2009, Léger et al. (2009) announced the discovery of a transiting planet
CoRoT-7b, the first Super-Earth with a measured radius found by the CoRoT space
mission. At the time, it had the smallest exoplanetary radius ever measured, Rb =
1.68 ± 0.09R⊕. CoRoT-7 is relatively bright (V = 11.7) but has fairly high activity
levels, meaning that for a long time the number of planets detected around it and
their precise physical parameters remained in debate.

Following this discovery, a 4-month intensive HARPS campaign was launched
in order to measure the mass of CoRoT-7b. The results of this run are reported in
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Queloz et al. (2009). They expected the RV variations to be heavily affected by stellar
activity, given the large modulations in the CoRoT photometry. The star’s lightcurve
(2008–2009 CoRoT run) shows modulations due to starspots of up to 2%, which
tells us that CoRoT-7 is more active than the Sun, whose greatest recorded varia-
tions in irradiance are of 0.34% (Kopp and Lean 2011). Indeed, a few simultaneous
photometric measurements from the Euler Swiss telescope confirmed that CoRoT-7
was very spotted throughout the HARPS run. In order to remove the activity-induced
RV variations from the data, Queloz et al. (2009) applied a pre-whitening procedure
followed by a harmonic decomposition (see Sect. 2.2.3). For the prewhitening, the
period of the stellar rotation signal was identified by means of a Fourier analysis, and
a sine fit with this period was subtracted from the data. This operation was applied
to the residuals to remove the next strongest signal, and so on until the noise level
was reached. All the signals detected with this method were determined to be asso-
ciated with harmonics of the stellar rotation period, except two signals at 0.85 and
3.69 days. The RV signal at 0.85 days was found to be consistent with the CoRoT
transit ephemeris, thus confirming the planetary nature of CoRoT-7b. Its mass was
determined to be 4.8 ± 0.8 M⊕. In order to assess the nature of the signal at 3.69
days, Queloz et al. (2009) used a harmonic decomposition to create a high pass filter:
the RV data were fitted with a Fourier series comprising the first three harmonics of
the stellar rotation period, within a time window sliding along the data. The length of
this window (coherence time) was chosen to be 20 days, so that any signals varying
over a longer timescale were filtered out—starspots typically have lifetimes of about
a month (Schrijver 2002; Hussain 2002, see Chap.2). The harmonically filtered data
were found to contain a strong periodic signal at 3.69 days, which was attributed to
the orbit of CoRoT-7c, another super-Earth with a mass of 8.4 ± 0.9 M⊕.

A few months later, Bruntt et al. (2010) re-measured the stellar radius with
improved stellar analysis techniques, which led to a slightly smaller planetary radius
for CoRoT-7b than initially found, of 1.58 ± 0.10R⊕.

A separate investigation was later carried out by Lanza et al. (2010). The stellar
induced RV variations were synthesized based on a fit to the CoRoT lightcurve,
which was computed according to a maximum entropy spot model (Lanza et al.
2009, 2011). The existence of the two planets was then confirmed by demonstrating
that the activity-induced RV variations did not contain any spurious signals at the
orbital periods of the two planets, with an estimated false alarm probability of less
than 10−4.

In another analysis, Hatzes et al. (2010) applied a prewhitening procedure to the
full width at half-maximum (FWHM), bisector span and Ca II H&K line emission
derived from the HARPS spectra and cross-correlation analyses. These quantities
vary according to activity only, and are independent of planetary orbital motions
(see Sect. 2.2.1.1). No significant signals were found in any of these indicators at the
periods of 0.85 and 3.69 days. Furthermore, they investigated the nature of a signal
found in the RV data at 9.02 days. It had been previously detected by Queloz et al.
(2009) but had been attributed to a “two frequency beating mode” resulting from an
amplitude modulation of a signal at a period of 61 days. This is close to twice the
stellar rotation period so it was deemed to be activity related. Hatzes et al. found no

http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_2
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trace of a signal at 9.02 days in any of the activity indicators. They thus suggested
this RV signal could be attributed to a third planetary companion with a mass of
16.7 ± 0.42M⊕. They also confirmed the presence of CoRoT-7b and CoRoT-7c, but
found different masses than calculated by Queloz et al. (2009). This was inevitable
since the derived masses of planets are intimately connected with the methods used
to mitigate the effects of stellar activity on the RV data.

Hatzes et al. (2010, 2011) developed a very simple method to remove stellar
activity-induced RV variations, to obtain a more accurate mass for CoRoT-7b. The
method relied on making several well-separated observations on each night, which
was the case for about half of the HARPS data. Under the assumption that the
variations due to activity and other planets were negligible during the span of the
observations on each night, it was possible to fit a Keplerian orbit assuming that the
velocity zero-point differs from night to night but remained constant within each
night (see Sect. 2.2.2). Hatzes et al. (2010) report a mass of CoRoT-7b of 6.9 ± 1.4
M⊕ and the second analysis (Hatzes et al. 2011) yields a mass of 7.42 ± 1.21 M⊕,
which is consistent.

Pont et al. (2010) carried out an analysis based on a maximum entropy spot model
(similar to Lanza et al. 2010) which made use of many small spots as opposed to
few large spots. The model was constrained using FWHM and bisector information.
A careful examination of the residuals of the activity and planet models led to the
authors to add an additional noise term in order to account for possible systematics
beyond the formal RV uncertainties. Pont et al. (2010) argued that CoRoT-7b was
detected in the RV data with much less confidence than in previous analyses, and
reported a mass of 2.3 ± 1.8 M⊕ detected at a 1.2σ level. Furthermore, they argued
that the RV data were not numerous enough and lacked the quality required to look
for convincing evidence of additional companions.

Boisse et al. (2011) applied their soap tool Boisse et al. (2011) to the CoRoT-
7 system. This program simulates spots on the surface of a rotating star and then
uses this model to compute the activity-induced RV variations of the star. With this
technique, they obtained mass estimates for CoRoT-7b and CoRoT-7c. They judge
that their errors are underestimated and suggest adding a noise term of 1.5 m · s−1 to
account for activity-driven RV variations. Their mass estimate for CoRoT-7b was in
agreement with the value reported by Queloz et al. (2009) but they found a slightly
higher value for the mass of CoRoT-7c.

Ferraz-Mello et al. (2011) constructed their own version of the high-pass filter
employed by Queloz et al. (2009) in order to test the validity of this method and
estimated masses for CoRoT-7b and 7c. They compared it to the method used by
Hatzes et al. (2010, 2011) and to a pure Fourier analysis. They concluded the method
was robust, and obtained revised masses of 8.0 ± 1.2 M⊕ for CoRoT-7b and 13.6 ±
1.4 M⊕ for CoRoT-7c, but made no mention of CoRoT-7d.

The analysis by Lanza et al. (2010), which makes use of the CoRoT lightcurve
(Léger et al. 2009) to model the activity-induced RV variations, and those by Pont
et al. (2010) and Boisse et al. (2011), which rely on the tight correlation between the
FWHM and the simultaneous Euler photometry (Queloz et al. 2009), could be much
improved with simultaneous photometric and RV data (see Lanza et al., in prep.).

http://dx.doi.org/10.1007/978-3-319-41273-3_2
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The spot activity on CoRoT-7 changes very rapidly and it is therefore not possible
to deduce the form of the activity-driven RV variations from photometry taken up to
a year before the RV data.

In the next section, I introduce the new simultaneous photometric and RV obser-
vations obtained in 2012 January with the CoRoT satellite andHARPS spectrograph.
I implement my model in Sect. 4.1.4, and discuss the outcomes in Sect. 4.1.5.

4.1.2 Observations

4.1.2.1 HARPS Spectroscopy

Radial velocities The CoRoT-7 system was observed with the HARPS instrument
on the ESO 3.6m telescope at La Silla, Chile for 26 consecutive clear nights from
2012 January 12 to February 6, with multiple well-separated measurements on each
night. The 2012 RV data, shown in Fig. 4.1, were reprocessed in the same way as the
2008–2009 data (Queloz et al. 2009) using the HARPS data analysis pipeline. The
cross-correlation was performed using a K5 spectral mask. The data are available in
Table A1 of Haywood et al. (2014). The median, minimum and maximum signal-
to-noise ratio of the HARPS spectra at central wavelength 556.50nm are 44.8, 33.8
and 56.2, respectively. The RV variations during the second run, shown in Fig. 4.1
have a smaller amplitude than during the first HARPS campaign, implying that the
star has become less active than it was in 2008–2009.

Time Series of Trailed Spectra I grouped the reprocessed cross-correlation func-
tions (CCFs) into nightly averages, and subtracted the mean CCF (calculated over
the full run) in order to obtain the residual perturbations to each line profile. I then
stacked each of these residuals on top of one another as a function of time. The resul-
tant trail of spectra is shown in Fig. 4.2. The bright trails are produced by starspots
or groups of faculae drifting across the surface as the star rotates.

Fig. 4.1 RV observations of CoRoT-7, made in January 2012 with HARPS
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Fig. 4.2 Trailed CCFs: the
average line profile is
subtracted from the
individual profiles, which are
then stacked vertically as a
function of time. The two
vertical dark lines represent
gaps between groups of
magnetically active regions
crossing the stellar disc as
the star rotates. The small
variations along the
horizontal scale within
individual line profiles arise
from the uniqueness of each
pixel on the CCD

4.1.2.2 CoRoT Photometry

CoRoT-7 was observed with the CoRoT satellite (Auvergne et al. 2009) from 2012
January 10 to March 29. Figure4.3 shows the part of the lightcurve which overlaps
with the 2012 HARPS run. Measurements were taken in CoRoT’s high cadence
mode (every 32s). The data were reduced with the CoRoT imagette pipeline with
an optimised photometric mask in order to maximise the signal-to-noise ratio of the
lightcurve. Further details on the data reduction are given by Barros et al. (2014),
who present a combined analysis of both CoRoT datasets. They derive the revised
orbital period and epoch of first transit shown in Table4.1. These values will be used
as prior information in my MCMC simulations (see Sect. 4.1.4). I binned the data
in blocks of 0.07 day, which corresponds to 6176s and is close to the orbital period
of the satellite of 6184 s (Auvergne et al. 2009) in order to average the effects of all
sources of systematic errors related to the orbital motion of CoRoT.
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Fig. 4.3 Upper panel CoRoT-7 lightcurve over the span of the 2012 RV run, with my photometric
fit at each RV observation overplotted as the blue curve. Lower panel Residuals of the fit

Table 4.1 Transit and star information based on both CoRoT runs (results from Barros et al. 2014)

CoRoT-7

Spectral type G9V

Mass 0.913 ± 0.017M�
Radius 0.820 ± 0.019 R�
Age 1.32 ± 0.76Gyr

CoRoT-7b

Orbital period 0.85359165 ± 5.6 × 10−7 day

Transit ephemeris 2454398.07694 ± 6.7 × 10−4HJD

Transit duration 1.42 ± 0.15 h

Orbital inclination 80.78+0.51
−0.23 deg

Radius 1.585 ± 0.064R⊕

4.1.3 Preliminary Periodogram Analysis

In order to determine an appropriate set of parameters as a starting point for my
MCMC analysis, I made a periodogram of the 2012 RV data, shown in Fig. 4.4 (see
Sect. 2.3.2.1). The stellar rotation period and its harmonics are marked by the red
lines (solid and dashed, respectively). Because the orbital period of CoRoT-7b is
close to 1 day, its peak in the periodogram is hidden amongst the aliases produced by
the two strong peaks at 3.69 and 8.58 days. The peak at 3.69 days matches the period
for CoRoT-7c of Queloz et al. (2009). We see another strong peak at a period of 8.58
days, which is close to the period found by Lanza (in prep.) of 8.29 days for the
candidate planet signal CoRoT-7d, and about half a day shorter than that determined

http://dx.doi.org/10.1007/978-3-319-41273-3_2
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Fig. 4.4 Generalised Lomb–Scargle periodogram of the 2012 RV dataset. The stellar rotation
fundamental, Prot , and harmonics are represented with solid and dashed lines, respectively. Also
shown are the orbital period of CoRoT-7b derived from the transit analysis of Barros et al. (2014),
Pb, and the periods of the two strong peaks at 3.69 and 8.58 days

by Hatzes (in prep.) based on the same dataset. The periodogram shows that this peak
is very broad and spans the whole 8–9 days range. Several stellar rotation harmonics
are also present within this range, so at this stage I cannot conclude on the nature of
this signal (this is discussed further in Sect. 4.1.5.3).

4.1.4 MCMC Analysis

4.1.4.1 RV Model

The planet orbits are modelled as Keplerians, while the activity model is based on a
Gaussian process with a quasi-periodic covariance function trained on the off-transit
variations in the star’s lightcurve (see next section). I then use this Gaussian process
in two ways:

(a) I model the suppression of convective blueshift and the flux blocked by starspots
on a rotating star, via the FF ′ method of Aigrain et al. (2012). This method is
explained in detail in Sect. 2.2.5 of Chap.2.

(b) I use another Gaussian process with the same covariance properties to account
for other activity-induced signals, such as photospheric inflows towards active
regions or limb-brightened facular emission that is not spatially associated with
starspots (Haywood et al. (2014), see Sect. 2.1.5.3).

The total RV model has the form:

�RVtot(ti ) = RV0 + A�RVrot + B�RVconv + �RVrumble

+
npl∑

k=1

Kk
[
cos(νk(ti , tperik , Pk) + ωk) + ek cos(ωk)

]
, (4.1)

http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_2
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where all the symbols have their usualmeaning (refer to Sect. 3.2.3). The stellar radius
R�, which is needed to calculate the �RVrot basis function of the FF ′ method, is set
to the value determined by Barros et al. (2014), given in Table4.1. The second FF ′
basis function, �RVconv, depends on the difference between the convective blueshift
in the unspotted photosphere and that within the magnetised area (δVc) and the ratio
of this area to the spot surface (κ).We do not know their values in the case of CoRoT-7
so they will be absorbed into the scaling constant B.

4.1.4.2 Gaussian Process

I interpolated the flux from the CoRoT lightcurve at the time of each RV point using
a Gaussian process with a quasi-periodic covariance function:

k (t, t ′) = η2
1 . exp

(
− (t − t ′)2

2η2
2

− 2 sin2( π(t−t ′)
η3

)

η2
4

)
. (4.2)

It is the same as Eq.3.14 that I introduced in the previous chapter. The shape of this
covariance function reflects the quasi-periodic nature of the CoRoT lightcurve, as
evolving active regions come in and out of view.

The hyperparameters are determined via the MCMC simulation described in
Sect. 3.1.6.

1. Amplitude of the Gaussian process, η1;
2. Timescale for growth and decay of active regions, η2: I found it to be η2 =

20.6 ± 2.5 days. This implies that the active regions on the stellar surface evolve
on timescales similar to the stellar rotation period;

3. Stellar rotation period, η3: I computed the discrete autocorrelation function
(Edelson and Krolik 1988) of the lightcurve (it is displayed in the second panel
of Fig. 3.7 in the previous chapter). I find Prot = 23.81 ± 0.03 days, which is
consistent with the estimate of Léger et al. (2009) of about 23 days. I applied this
value as a Gaussian prior in the MCMC simulation I ran to determine the other
hyperparameters;

4. Finally, η4 determines how smooth the fit is.

Thefit is shown in the top panel of Fig. 4.3. The residuals of the fit shown in the bottom
panel show no correlated noise and have an rms scatter of 0.02%. The parameters
of the RVmodel are then fitted via the MCMC procedure that I presented in Sect. 3.2
of the previous chapter.

http://dx.doi.org/10.1007/978-3-319-41273-3_3
http://dx.doi.org/10.1007/978-3-319-41273-3_3
http://dx.doi.org/10.1007/978-3-319-41273-3_3
http://dx.doi.org/10.1007/978-3-319-41273-3_3
http://dx.doi.org/10.1007/978-3-319-41273-3_3
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4.1.5 Results and Discussion

4.1.5.1 Justification for the Use of a Gaussian Process in Addition
to the FF′ method

Initially, I used the FF ′ basis functions on their own to account for activity-induced
signals in the RVs. However, it quickly became apparent that an additional term is
needed to account for all slowly-varying signals. I find that an RV model including
a Gaussian process with a quasi-periodic covariance structure is the only model that
yields uncorrelated, flat residuals. Regardless of the number of planets modelled,
without the inclusion of this Gaussian process the residuals always display correlated
behaviour. Figure4.5 shows the residuals remaining after fitting the orbits of CoRoT-
7b,CoRoT-7c and a thirdKeplerian, and the twobasis functions of the FF ′ model.We
see that even the addition of a third Keplerian does not absorb these variations, which
appear to be quasi-periodic. Also, I note that a Gaussian process with a less complex,
square exponential covariance function does not fully account for correlated residuals
in either a 2- or 3-planet model. A comparison between a model with 2 planet orbits,
the FF ′ basis functions and a Gaussian process that has square exponential or quasi-
periodic covariance properties yields a Bayes factor of 3 × 106 in favour of the latter.
This implies that the active regions on the stellar surface do remain, in part, from one
rotation to the next.

Fig. 4.5 Top RV residuals remaining after fitting a 3-planet + FF ′ activity functions model. They
contain quasi-periodic variations, and show the need to use a red noise “absorber” such as aGaussian
process. Bottom RV residuals after including a Gaussian process with a quasi-periodic covariance
function in our RV model. The rms of the residuals, now uncorrelated, is 1.96 m · s−1 which is at
the level of the error bars of the data
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4.1.5.2 Identifying the Best Model Using Bayesian Model Selection

I ran MCMC simulations for models with 0 (activity only), 1, and 2 planets. I esti-
mated the marginal likelihood of each model from the MCMC samples using the
method of Chib and Jeliazkov (2001), which I described in Sect. 3.3. The marginal
likelihoods are listed in the second to last row of Table4.2. I also tested a 3-planet
model, which I discuss in the next section.

The 2-planet model is preferred over the activity-only and 1-planet model (see the
first three columns in Table4.2). I also found that a 2-planet model with free orbital
eccentricities is preferred over a model with forced circular orbits by a Bayes’ factor
of 5 · 103 (see Sect. 3.3). The model with forced circular orbits is penalised mostly
because of the non-zero eccentricity of CoRoT-7c. Indeed, keeping eb fixed to zero
while letting ec free yields a Bayes’ factor of 270 (over a model with both orbits
circular), while the Bayes’ factor between models with eb fixed or free (ec free in
both cases) is only 36. A model with no planets, consisting solely of the FF ′ basis
functions and a quasi-periodic Gaussian process (Model 0) is severely penalised; this
attests that models with the covariance properties of the stellar activity do not absorb
the signals of planets b and c.

4.1.5.3 CoRoT-7d or Stellar Activity?

I investigated the outputs of 3-planet models in order to look for the 9-day signal
present in the 2009 RV data (Queloz et al. 2009; Hatzes et al. 2010), whose origin
has been strongly debated (cf. Sect. 4.1.1 and references therein).

First, I fitted a model comprising three Keplerians, the FF ′ basis functions and an
additional Gaussian process with a quasi-periodic covariance function. I recover the
orbits of the two inner planets but do not detect another signal with any significance.
The residuals are uncorrelated and at the level of the error bars. I then constrained
the orbital period of the third planet with a Gaussian prior centred around the period
recently reported by Tuomi et al. (2014) at Pd = 8.8999 ± 0.0082 days, and imposed
a Gaussian prior centred at 2455949.97 ± 0.44 BJD on the predicted time of transit
(which corresponds to the phase I determined based on the orbital period of Tuomi
et al. (2014). I recover a signal which corresponds to a planet mass of 13 ± 5 M⊕
and is in agreement with the mass proposed by Tuomi et al. (2014). However, the log
marginal likelihood of this model is −192.5 ± 0.7; this is lower than the log mar-
ginal likelihood of the 2-planet model (Model 2, logLML = −190.1 ± 0.7), which
suggests that the addition of an extra Keplerian orbit at 9 days is not justified in view
of the improvement to the fit.

Since this orbital period is very close to the second harmonic of the stellar rotation,
it is plausible that the Gaussian process could be absorbing some or all of the signal
produced by a planet’s orbit at this period. In order to test whether this is the case,
I took the residuals of Model 2 and injected a synthetic sinusoid with the orbital
parameters of planet d reported by Tuomi et al. (2014). I fitted this fake dataset with
a model consisting of a Gaussian process (with the same quasi-periodic covariance

http://dx.doi.org/10.1007/978-3-319-41273-3_3
http://dx.doi.org/10.1007/978-3-319-41273-3_3
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Table 4.2 Outcome of a selection of models: Model 0: stellar activity only, modelled by the FF ′
basis functions and a Gaussian process with a quasi-periodic covariance function; Model 1: activity
and 1 planet; Model 2: activity and 2 planets; Model 2b: activity and 2 planets with eccentricities
fixed to 0

Model 0 Model 1 Model 2 Model 2b

Stellar activity

A (m · s−1) −0.36 ± 0.20 −0.35 ± 0.21 0.06 ± 0.13 0.06 ± 0.12

B (m · s−1) 0.84 ± 1.07 −0.35 ± 1.30 0.64 ± 0.28 0.49 ± 0.35

�0/�max 1.014 ± 0.013 1.014 ± 0.012 1.014 ± 0.012 1.014 ± 0.013

θ1 (m · s−1) 75 ± 19 86 ± 20 7 ± 2 8 ± 2

CoRoT-7b

P (days) 0.85359165(6) 0.85359165(5) 0.85359163(6)

t0
(BJD—2450000)

4398.0769(7) 4398.0769(8) 4398.0769(8)

tperi
(BJD—2450000)

4398.10(7) 4398.21(9) 4398.863(1)

K (m · s−1) 3.95 ± 0.71 3.42 ± 0.66 3.10 ± 0.68

e 0.17 ± 0.09 0.12 ± 0.07 0 (fixed)

ω (◦) 105 ± 61 160 ± 140 0 (fixed)

m (M⊕) 5.37 ± 1.02 4.73 ± 0.95 4.45 ± 0.98

ρ (g · cm−3) 7.51 ± 1.43 6.61 ± 1.33 6.21 ± 1.37

a (AU) 0.017(1) 0.017(1) 0.017(1)

CoRoT-7c

P (days) 3.70 ± 0.02 3.68 ± 0.02

t0
(BJD—2450000)

5953.54(7) 5953.59(5)

tperi
(BJD—2450000)

5953.3(3) 5952.67(6)

K (m · s−1) 6.01 ± 0.47 5.95 ± 0.48

e 0.12 ± 0.06 0 (fixed)

m (M⊕) 13.56 ± 1.08 13.65 ± 1.10

a (AU) 0.045(1) 0.045(2)

nobs 71 71 71 71

nparams 5 10 15 11

logLmax −237.6 ± 0.3 −223.6 ± 0.5 −188.0 ± 0.2 −196.28 ± 0.04

π̂ 0 ± 1 2 ± 1 2 ± 1 2.2 ± 0.8

logLML −237 ± 1 −225 ± 1 −190.1 ± 0.7 −198.5 ± 0.8

Bayes’ factor:
Bk,2

4 × 10−21 6 × 10−16 – 2 × 10−4

BIC 496.5 489.8 439.9 439.4

The numbers in brackets represent the uncertainty in the last digit of the value. Also given are
the number of observations used (nobs), the number of parameters in each model (nparams), the
maximum likelihood (logLmax), the posterior ordinate (π̂), the marginal likelihood (logLML) and
the Bayesian Information Criterion (BIC) for each model. In the last row, each model is compared
to Model 2 using Bayes’ factor
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function as before), a Keplerian and a constant offset. I find that the planet signal is
completely absorbed by the Keplerian model, within uncertainties—the amplitude
injected was 5.16 ± 1.84 m · s−1, while that recovered is 4.97 ± 0.35 m · s−1. This
experiment attests that the likelihood of the model (see Eq. 3.28) acts to keep the
amplitude of the Gaussian process as small as possible, in order to compensate for
its high degree of flexibility, and allow other parts of the model to fit the data if they
are less complex than the Gaussian process. I therefore conclude that if there were
a completely coherent signal close to 9 days, it would be left out by the Gaussian
process and be absorbed by the third Keplerian of the 3-planet model.

This signal therefore cannot be fully coherent over the span of the observations.
Indeed, we see in the periodogram of the RV data in Fig. 4.4 that the peak at this
period is broad. I note that despite the lower activity levels of the star in the 2012
dataset, the 9-day period is less well determined in this dataset than in the 2008–2009
one. This peak is also broader than we would expect for a fully coherent signal at a
period close to 9 days with the observational sampling of the 2012 dataset. This is
likely to be caused by variations in the phase and amplitude of the signal over the
span of the 2012 data.

Based on the 2012 RV dataset, I do not have enough evidence to confirm the
presence of CoRoT-7d as its orbital period of 9 days is very close to the second
harmonic of the stellar rotation. Furthermore, the period measured for the 2009
dataset by Hatzes et al. (2010) Pd = 9.021 ± 0.019 days is not precise enough to
allow me to determine whether the signals from the two seasons are in phase, as was
done in the case ofαCentauri Bb byDumusque et al. (2012). The cycle count of orbits
elapsed between the twodatasets is:n = 1160/9.021 = 128.6orbits. The uncertainty
is n σPd/Pd = n (0.019/9.021) = 0.27 orbits. Although this 1-sigma uncertainty is
less than one orbit, it is big enough to make it impossible to test whether the signal
is still coherent. The most likely explanation, given the existing data, is that the 8–9
day signal seen in the periodogram of Fig. 4.4 is a harmonic of the stellar rotation.

4.1.5.4 Best RV Model: 2 Planets and Stellar Activity

Figure4.6 shows each component of the total RV model plotted over the duration
of the RV campaign. We see that the suppression of convective blueshift by active
regions surrounding starspots has a much greater impact on RV than flux blocked by
starspots; I discuss this further in Sect. 4.1.5.7.

Figure4.7 shows Lomb–Scargle periodograms of the CoRoT 2012 lightcurve and
the HARPS 2012 RV data. Panel (a) shows the periodogram of the full CoRoT
2012 lightcurve, while panel (b) represents the periodogram of the Gaussian process
fit to the lightcurve sampled at the times of the HARPS 2012 RV observations.
Both periodograms reveal a stronger peak at Prot/2 than at Prot, which indicates the
presence of two major active regions on opposite hemispheres of the star. This is in
agreement with the variations in the lightcurve in Fig. 4.3. Given that suppression of
convective blueshift appears to be the dominant signal, we would expect a similar
frequency structure to be present in the periodogram of the RV curve (panel (c)).

http://dx.doi.org/10.1007/978-3-319-41273-3_3
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Fig. 4.6 Time series of the various parts of the total RV model for Model 2, after subtracting
the star’s systemic velocity RV0. All RVs are in m · s−1. Panel (b) A�RVrot (orange full line),
B�RVconv (purple dashed line) and �RVrumble (blue full line with grey error band). Panel (e) the
total model (red), which is the sum of activity and planet RVs, is overlaid on top of the data (blue
points). Subtracting the model from the data yields the residuals plotted in panel (f)
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Fig. 4.7 Lomb–Scargle periodograms of: a the full 2012 CoRoT lightcurve; b the Gaussian process
fit to the 2012 CoRoT lightcurve sampled at the times of RV observations; c the raw 2012 HARPS
RV observations; d the RV data, from which I subtracted the FF ′ basis functions; e same as (d),
with the Gaussian process also removed; f same as (e), with the signal of planet c removed; g same
as (f), with planet b removed

Indeed, we see that the stellar rotation harmonics bracket the 6–10 day peak in the
periodogram, which has significantly greater power than the fundamental 23-day
rotation signal. In panel (d), I remove the two FF ′ basis functions. I then subtract the
Gaussian process (panel (e)). We see that the Gaussian process absorbs most of the
power present in the 6–10 day range. In panel (f), I have also subtracted the orbit of
planet c. This removes the peaks at Pc and its 1-day alias at∼1.37 days. The peak due
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Fig. 4.8 Panel a Phase plot of the orbit of CoRoT-7b for Model 2, with the contribution of the
activity and CoRoT-7c subtracted. Panel b Phase plot of the orbit of CoRoT-7c for Model 2, with
the contribution of the activity and CoRoT-7b subtracted

to CoRoT-7b now stands out along with its 1-day alias at P = 1/(1 − 1/Pb) ∼ 5.82
days and harmonics Pb/2 and Pb/3. Finally, I subtract the orbit of planet b, which
leaves us with the periodogram of the residuals. We see that no strong signals remain
except at the 1- and 2-day aliases arising from the window function of the ground-
based HARPS observations.

There are no strong correlations between any of the parameters. The K amplitudes
of planets b and c are found to be unaffected by the number of planets, choice
of eccentric or circular orbits, or choice of activity model (all, some or none of
�RVactivity), even when I leave Pc unconstrained. The residuals, with an rms scatter
of 1.96 m · s−1, are at the level of the error bars of the data and show no correlated
behaviour, as seen in the bottom panel of Fig. 4.5.

4.1.5.5 CoRoT-7b

The orbital parameters of CoRoT-7b are listed in the third column of Table4.2.
The orbital eccentricity of 0.12 ± 0.07 is detected with a low significance and is
compatible with the transit parameters determined by Barros et al. (2014).

As Imentioned in Sect. 4.1.5.2, themass of CoRoT-7b is not affected by the choice
of model, which attests to the robustness of this result. My mass of 4.73 ± 0.95 M⊕
is compatible, within uncertainties, with the results found by Queloz et al. (2009),
Boisse et al. (2011) and Tuomi et al. (2014). It is within 2-sigma of the masses found
by Pont et al. (2010), Hatzes et al. (2011) and Ferraz-Mello et al. (2011).

4.1.5.6 CoRoT-7c

I make a robust detection of CoRoT-7c at an orbital period of 3.70± 0.02 days, which
is in agreement with previous works that considered planet c. I estimate its mass to be
13.56± 1.08M⊕ (see Table4.2). This is in agreement with that given by Boisse et al.
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(2011) and Ferraz-Mello et al. (2011). It is just over 2-sigma lower than the mass
found by Hatzes et al. (2010), and over 3-sigma greater than the mass calculated by
Queloz et al. (2009). It suggests that the harmonic filtering technique employed by
Queloz et al. (2009) suppresses the amplitude of the signal at this period. This may
be due to the fact that Pc is close to the fifth harmonic of the stellar rotation, Prot/6 ∼
3.9 days (see Fig. 4.4), but Queloz et al. (2009) only model RV variations using the
first two harmonics, thus leaving Pc and Prot/6 entangled. Ferraz-Mello et al. (2011),
who performed a similar analysis to that of Queloz et al. (2009), mention that the
proximity of Pc to Prot/6 may lead to underestimating the RV amplitude of CoRoT-7c
by up to 0.5 m · s−1 due to beating between these two frequencies.

I estimated the minimum orbital inclination this planet has to have in order
to be transiting. Its radius Rc can be approximated using the formula given by
Lissauer et al. (2011):

Rc =
( Mc

M⊕

)1/2.06
R⊕, (4.3)

whereM⊕ and R⊕ are themass and radius of the Earth. Using themass for CoRoT-7c
given in the third column of Table4.2, I find Rc = 3.54 R⊕. With this radius, CoRoT-
7c would have to have a minimum orbital inclination of 83.7◦ in order to be passing
in front of the stellar disc with respect to the observer.

CoRoT-7b’s orbital axis is inclined at 79.0◦ to the line of sight (preliminary result
ofBarros et al. 2014).According toLissauer et al. (2011), over 85%of observed com-
pact planetary systems containing transiting super-Earths and Neptunes are coplanar
within 3◦. Planet c is therefore not very likely to transit. Indeed, no transits of this
planet are detected in any of the CoRoT runs. Any planets further out from the star
with a similar radius or smaller are even less likely to transit.

4.1.5.7 The Magnetic Activity of CoRoT-7

In Model 2, the rms scatter of the total activity model is 4.86 m · s−1 (see Fig. 4.6b).
For moderately active host stars such as CoRoT-7, the activity contribution largely
dominates the reflex motion induced by a closely orbiting super-Earth.

The rms scatter of �RVrot and �RVconv are 0.46 and 1.82 m · s−1, respectively.
The smaller impact of the surface brightness inhomogeneities on the RV variations
could be due to the small v sin i of the star (Bruntt et al. 2010), because the amplitude
of these variations scales approximately with v sin i (Desort et al. 2007). This sug-
gests that for slowly rotating stars such as CoRoT-7, the suppression of convective
blueshift is the dominant contributor to the activity-modulated RV signal, rather than
the rotational Doppler shift of the flux blocked by starspots. This corroborates the
findings of Meunier et al. (2010) and Lagrange et al. (2010), who showed that the
suppression of convective blueshift is the dominant source of activity-induced RV
variations on the Sun, which is also a slowly rotating star (see discussions back in
Chap.2).

http://dx.doi.org/10.1007/978-3-319-41273-3_2
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I use a Gaussian process to absorb correlated residuals due to other physical
phenomena occurring on timescales of order of the stellar rotation period. In the case
of CoRoT-7, these combined signatures have an rms of 3.95 m · s−1, suggesting that
there are other processes than those modelled by the FF ′ method at play.

4.1.6 Summary

The CoRoT-7 system was re-observed in 2012 with the CoRoT satellite and the
HARPS spectrograph simultaneously. These observations allowed me to apply the
FF ′ method ofAigrain et al. (2012) tomodel the RV variations produced by themag-
netic activity of CoRoT-7. If I only use the FF ′ method to model the activity, I find
correlated noise in the RV residuals which cannot be accounted for by a set of Kep-
lerian planetary signals. This indicates that some activity-related noise is still present.
Indeed, as previously mentioned in Sect. 2.2.5 in Chap.2, the FF ′ method does not
account for all phenomena such as the effect of limb-brightened facular emission on
the cross-correlation function profile, photospheric inflows towards active regions, or
faculae that are not spatially associated with starspot groups. Furthermore, some lon-
gitudinal spot distributions have almost no photometric signature (see Sect. 2.1.5.3).
To model this low-frequency stellar signal, I use a Gaussian process with a quasi-
periodic covariance function that has the same frequency structure as the lightcurve
(see Chap.3).

I run an MCMC simulation and use Bayesian model selection to determine the
number of planets in this system and estimate their masses. I find that the transit-
ing super-Earth CoRoT-7b has a mass of 4.73 ± 0.95M⊕. Using the planet radius
estimated by Bruntt et al. (2010), CoRoT-7b has a density of (6.61 ± 1.72)(Rp/1.58
R⊕)−3 g · cm−3, which is compatible with a rocky composition. I confirm the pres-
ence of CoRoT-7c, which has a mass of 13.56 ± 1.08M⊕. My findings agree with
the analyses made by Barros et al. 2014 and Tuomi et al. (2014).

I search for evidence of an additional planetary companion at a period of 9 days, as
proposed by Hatzes et al. (2010) following an analysis of the 2008–2009 RV dataset.
While the Lomb–Scargle periodogram of the 2012 RVs displays a strong peak in the
6–10 days range, I find that this signal is more likely to be associated with the second
harmonic of the stellar rotation at ∼7.9 days.

In CoRoT-7, the RVmodulation induced by stellar activity dominates the total RV
signal despite the close-in orbit of (at least) one super-Earth and one sub-Neptune-
mass planet. Understanding the effects of stellar activity on RV observations is there-
fore crucial to improve our ability to detect low-mass planets and obtain a precise
measure of their mass.

http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_3
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4.2 Kepler-78

Kepler-78 is a very active star, and would have never been selected for an RV cam-
paign were it not for the discovery of an Earth-size planet crossing its disc every
8.5h. It was found around the time at which I finished writing my MCMC code with
Gaussian processes, so I decided to give it a go. It turns out that a Gaussian process
trained on the lightcurve is very effective at modelling activity-driven RV variations
for this kind of system.

4.2.1 History of the System

In 2013, Sanchis-Ojeda et al. (2013) reported on the discovery of a transiting short
period Earth-size planet around Kepler-78. At the time, this was one of the first
planets found with an orbital period of less than 1 day, and it was one of the smallest
planets ever discovered. Themain characteristics of the star and the transit parameters
of Kepler-78b found by Sanchis-Ojeda et al. (2013) are detailed in Table4.3.

Shortly after this announcement, the star was observed intensively with HARPS-
N and HIRES in order to measure the mass of the planet. This was made tricky due
to the high levels of activity of the host star. Its full Kepler lightcurve, shown in
Fig. 4.10 displays peak-to-peak variations of about 10 mmag. By my rule of thumb
(acquired from my experience with CoRoT-7, Kepler-10 and results by Aigrain
et al. (2012)—see Chap.2), this translates into activity-induced variations of about
20 m · s−1 peak to peak, and indeed this is what we see in the HIRES and HARPS-N
RV observations (see Fig. 4.9).

http://dx.doi.org/10.1007/978-3-319-41273-3_2
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Table 4.3 Stellar parameters and transit parameters ofKepler-78b (fromSanchis-Ojeda et al. 2013),
adopted in my analysis

Kepler-78

Mass 0.81 ± 0.05M�
Radius 0.74+0.10

−0.08 R�
Age 750 ± 150 Gyr

Projected rotation, v sin i 2.4 ± 0.5 km · s−1

Kepler-78b

Orbital period 0.35500744 ± 0.00000006 day

Mid-transit time 2454953.95995 ± 0.00015 BJD

Orbital inclination 79+9
−14 deg

Radius 1.16+0.19
−0.14 R⊕

Mass 1.86+0.38
−0.25 M⊕

They derived the star’s age based on its rotation period and mass, using the formula found by
Schlaufman (2010) (this age is compatible with the star’s projected rotation). The mass of Kepler-
78b is that determined by Pepe et al. (2013)

Fig. 4.9 Kepler-78 RV observations by HARPS (blue points) and HIRES (green points)

Pepe et al. (2013) reported on the HARPS-N observations. In order to determine
the mass of the planet, they applied the nightly offsets method of Hatzes et al. (2011),
originally developed to measure the mass of CoRoT-7b (see Sects. 2.2.2 and 4.1.1).
This technique relies on the stellar activity timescales (the stellar rotation period of
about 12 days and its main harmonics) being much longer than the planet orbital
period (about 8.5h). Over the span of a single night, all the variations in RV can be
attributed to the planet’s motion. It is therefore possible to treat the stellar activity
signal as a nightly constant. Using this technique, Pepe et al. (2013) recover a semi-
amplitude for Kepler-78b Kb = 1.96 ± 0.32 m · s−1.

Howard et al. (2013) present the analysis of the HIRES RV data. They model the
activity-induced RV variations as a sum of Fourier components with periods equal
to the stellar rotation period and its first two harmonics (they show that the power
at higher harmonics is negligible). This worked well since the activity signals are

http://dx.doi.org/10.1007/978-3-319-41273-3_2
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Fig. 4.10 Kepler-78 binned lightcurve, fitted with a Gaussian process (quasi-periodic covariance
function)

strongly modulated by the stellar rotation. With this technique, the semi-amplitude
obtained for Kepler-78b is Kb = 1.66 ± 0.40 m · s−1. The semi-amplitudes obtained
through both analyses of the two independent datasets are in good agreement.

Following the analyses by Pepe et al. (2013) and Howard et al. (2013), Grunblatt
et al. (2015) took a step further and combined the two RV datasets together in order
to make a more precise mass determination. The model for activity-induced RV
variations is based on a Gaussian process with a quasi-periodic covariance function,
trained on the lightcurve in order to extract its frequency structure. We tested a vari-
ety of models, including quasi-periodic and square exponential covariance functions,
additional white noise parameters and combinations thereof. The two spectrographs
have a different wavelength coverage, and the active regions leading to RV variations
may produce different amplitudes at different wavelengths, so we also tried mod-
elling the activity signals with a separate Gaussian process for each RV dataset. We
compared models in a qualitative way rather than doing a full Bayesian model selec-
tion analysis, which we deemed unnecessary at the time. We found that modelling
the activity-driven RV variations as two separate Gaussian processes with separate
η1 but the same η2, η3 and η4 hyperparameters, with the addition of two separate
white noise terms provided the best fit. The results of this analysis are given in the
second column of Table4.4. We determine the planet mass to a 6.5-sigma precision,
an improvement of 2.5-sigma over the value of Howard et al. (2013). Our mass value
is in agreement with those of Pepe et al. (2013) and Howard et al. (2013).

The analysis I present here is much simpler: I only use a single Gaussian process
for both datasets, with no additional white noise parameter. I will show that both
analyses are in agreement. A Gaussian process on its own is effective at modelling
activity-induced RV variations reliably, even for a star as active as Kepler-78.
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Table 4.4 Outcome of my model, which consists of a Gaussian process with a quasi-periodic
covariance function, one Keplerian circular orbit and one zero offset for each RV dataset, compared
with the model applied by Grunblatt et al. (2015), consisting of two separate Gaussian processes,
one Keplerian circular orbit, two RV offsets and two additional white noise terms (σ)

My model Grunblatt et al.

Planet b

P (days) 0.35500744 ± 0.00000006

t0 (BJD—2450000) 2454953.95995 ± 0.00015

K (m · s−1) 1.87 ± 0.19 1.86 ± 0.25

e 0 (fixed) 0 (fixed)

m (M⊕) 1.76 ± 0.18 1.87+0.27
−0.26

ρ (g · cm−3) 6.2+1.8
−1.4 6.0+1.9

−1.4

a (AU) 0.009 ± 0.001 –

Gaussian process for stellar activity

θ1 (m · s−1) 8.78 ± 1.11 0

θ1,HARPN (m · s−1) 0 5.6+2.0
−1.3

θ1,Keck (m · s−1) 0 11.6+3.7
−2.5

θ2 (days) 17 ± 1 26.1+19.8
−11

θ3 (days) 12.74 ± 0.06 13.12+0.14
−0.12

θ4 0.47 ± 0.05 0.28+0.05
−0.04

Additional white noise

σHARPN (m · s−1) 0 1.1+0.4
−0.5

σKeck (m · s−1) 0 2.1+0.3
−0.3

Constant RV offsets

RV0,HARPN (m · s−1) 2.5 ± 3.3 –

RV0,Keck (m · s−1) −1.0 ± 3.4 –

The quantities marked as ‘–’ in the second column are part of their model, but their values were not
listed in the paper

4.2.2 Observations

4.2.2.1 Spectroscopy

The HARPS-N RV campaign spans 2013May 23-August 28, with 112 observations.
I discarded one observation at 24556435.724 BJD as its very low signal-to-noise
ratio clearly indicates that it was taken during bad weather. The HIRES campaign,
from 2013 June 05 to July 20 overlaps this period, and contains 84 observations. The
RVs are shown in Fig. 4.9. The data from both campaigns can be found in Pepe et al.
(2013) and Howard et al. (2013).
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4.2.2.2 Photometry

Kepler-78 was observed by the Kepler satellite at long cadence. Figure4.10 shows
the lightcurve (transits removed) of all quarters concatenated together.

4.2.3 MCMC Analysis

4.2.3.1 RV Model

The orbit of Kepler-78b is modelled as a Keplerian signal. I model the stellar activity
RV variations in both RV datasets using a single Gaussian process with a quasi-
periodic covariance function trained on the off-transit lightcurve. My final model is
as follows:

�RVtot(ti ) = RV0,Keck + RV0,HARPN + �RVrumble(ti , θ1)

+ cos(νb(ti , tperib , Pb) + ωb) + eb cos(ωb)
]
, (4.4)

where RV0Keck and RV0HARPN are constant offsets for each of the datasets. The period
of the orbit of Kepler-78 is given by Pb, and its semi-amplitude is Kb. νb(ti , tperib) is
the true anomaly of the planet at time ti , and tperib is the time of periastron. I fix the
eccentricity to zero, since with an orbital period of 8.5h it is reasonable to assume
that the planet will be tidally locked to its star.

The period and phase of the planet’s orbit are given Gaussian priors centred at the
values determined though the photometric analysis of Sanchis-Ojeda et al. (2013),
and with a sigma equal to the corresponding error bars of the photometry results.

I determine the parameters ofmyRVmodel followingmyusualMCMCprocedure
that I described in the previous chapter.

4.2.3.2 Gaussian Process

I choose a quasi-periodic covariance function of the form:

k (t, t ′) = η2
1 . exp

⎛

⎝− (t − t ′)2

2η2
2

−
2 sin2

(
π(t−t ′)

η3

)

η2
4

⎞

⎠ . (4.5)

In order to determine the best values of the hyperparameters η, I train the Gaussian
process on half the lightcurve, sampled at every 100th point. The resultant lightcurve
had 268 points, thus allowing me to compute the covariance matrix (of size 268 ×
268) in reasonable time. The sampling corresponds to one point roughly every 2 days,
which gives about 6 points per rotation period. Selecting only half the lightcurve still



94 4 Application to Observations of Planet-Hosting Stars

providesmewith plenty of rotation cycles in order to estimate the evolution timescale
of active regions.

I assume Jeffreys priors for the two timescales η2 (active-region evolution) and
η3 (rotation period). I also constrain the smoothing factor η4 to remain between
0 and 1 in order to prevent it from interfering with the evolution timescale. For
example, high frequency variations could be accounted for with either a very high
value of η4 or a very small η2. Constraining η4 helps avoid this “degeneracy”. The
best hyperparameter values, determined through the MCMC procedure described in
Sect. 3.1.6, are as follows:

1. Amplitude η1 = 0.0024 ± 0.0001 flux units. I subtracted the average value of
the flux and then divided by this same value so that the numbers were between 0
and 1;

2. Evolution timescale η2 = 17 ± 1 days. It is longer than the recurrence timescale,
which is consistent with the long-lived spots we can see from the autocorrelation
function of the lightcurve, shown in Fig. 4.11;

3. Recurrence timescale η3 = 12.74 ± 0.06 days. This rotation period is in agree-
ment with the value Prot = 12.71 days that I get from an autocorrelation analysis,
and Prot = 12.5 ± 1 days found by Sanchis-Ojeda et al. (2013);

4. Smoothing coefficient η4 = 0.47 ± 0.05.

The activity-driven RVs are modelled with a Gaussian process that has the same
quasi-periodic covariance function with a set of hyperparameters θ. I set θ2, θ3 and
θ4 equal to η2, η3 and η4, respectively. The amplitude θ1 of the Gaussian process is
kept as a free parameter in the MCMC.

Fig. 4.11 Autocorrelation
function of the lightcurve of
Kepler-78. It reveals the
presence of long-lived active
regions, which remain on the
stellar disc for several
rotations

http://dx.doi.org/10.1007/978-3-319-41273-3_3
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4.2.4 Results and Discussion

Table 4.4 lists the best-fit parameters I obtain, together with those of Grunblatt et al.
(2015). I measure a planet semi-amplitude Kb = 1.87 ± 0.19 m · s−1. The phase-
folded orbital signal of Kepler-78b is shown in Fig. 4.12.

My mass determination is consistent with the results found by Grunblatt et al.
(2015), Howard et al. (2013) and Pepe et al. (2013). The error bar of my result is
slightly smaller than that determined by Grunblatt et al. (2015), but the residuals
have an rms scatter of 2.3 m · s−1, which is slightly higher than the average level of
the error bars of 1.92 m · s−1 (and the periodogram of the residuals, in panel (d) of
Fig. 4.14, shows no significant signals). Grunblatt et al. (2015) use additional white
noise terms, which act to increase the error bars of their model in order to bring
the rms of the residuals to the level of the error bars. This additional white noise is
likely to come from p-mode oscillations and granulation motions that not have been
completely averaged out in each individual RV observation.

All the components of the RV model are shown in Fig. 4.13. Consider the 2
anomalous HARPS-N observations just before day 70; were it not for the presence
of similar outliers around days 40 and 50 in theHIRES observations, these pointsmay
have been dismissed as outliers affected by instrumental effects or bad weather (this
is in fact what Pepe et al. (2013) did). The Gaussian process, however, has no trouble
at all accounting for these measurements. This implies that they are compatible
with a process that has the same covariance properties, or frequency structure as the
lightcurve, and by extension as the magnetic activity behaviour of Kepler-78. The
Gaussian process reconciles the two datasets elegantly and effortlessly. Panels (b)
and (c) highlight the amplitude difference between the activity-induced variations
and the planet orbit. The difference in frequency structure, which is what this analysis
relies on, is also highlighted by these plots.

Fig. 4.12 Phase plot of the
orbit of Kepler-78b (circular
model)
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Fig. 4.13 Panel a the HARPS and HIRES observations, after subtracting the RV offsets for each
dataset; Panel b Gaussian process; Panel c orbit of Kepler-78b; Panel d total model (red), overlaid
on top of the data (blue points). Panel e residuals obtained after subtracting the model from the
observations. All RVs are in m · s−1
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Fig. 4.14 Lomb–Scargle periodograms of: a the full Kepler lightcurve; b the raw RV observations
(both datasets); c the RV data, fromwhich the activity model has been subtracted, revealing a strong
peak at the orbital period of Kepler-78b; d same as (c), with the orbit of planet b removed

4.2.4.1 The Magnetic Activity of Kepler-78

Figure4.14 shows Lomb–Scargle periodograms of the Kepler lightcurve (panel (a))
and the combinedHARPS andHIRESRV data (panel (b)). I computed periodograms
on the two RV datasets merged together, assuming a zero RV offset between the
two datasets. This is a reasonable assumption, given the estimates of RV0,HARPN

and RV0,Keck listed in Table4.4. Although these periodograms are therefore not fully
rigorous, they still provide a valuable insight on the frequency structure of the various
contributions of my RV model.

The periodogram of the lightcurve, in panel (a) displays strong peaks at Prot and
at Prot/2. The periodogram of the raw RVs, in panel (b), is dominated by peaks at
Prot/2 and Prot/3; we also see some power at Prot and Prot/4. There is a hint of a
peak at the planet’s orbital period Pb, but we wouldn’t be able to tell the presence
of a planet. Once I subtract the Gaussian process, however, the orbit of Kepler-78b
becomes clear: the Gaussian process has absorbed the activity signal so successfully
that the RV signal due to the planet is detected unambiguously, even without the
prior knowledge provided by the Kepler transits.
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4.2.5 Summary

Following the discovery of the transiting Earth-size planet Kepler-78b, the system
was observed with both the HARPS and HIRES spectrographs. I combined these
two RV datasets together and used a Gaussian process trained on the lightcurve to
model the activity-induced RV variations, which dominate the total RV variations
and reach amplitudes of up to 20 m · s−1. I find that the Gaussian process is reliable
and effective at accounting for activity-induced signals and allows me to determine
a mass for Kepler-78b which is consistent with previous estimates made by Howard
et al. (2013), Pepe et al. (2013) and Grunblatt et al. (2015). The precision of mymass
determination is slightly better than that of Grunblatt et al. (2015), who analysed the
same combined dataset with a model consisting of two separate Gaussian processes
and two white noise terms.

4.3 Kepler-10

Kepler-10 could not be more different to Kepler-78. Due to its old age, it is a very
quiet star, making it an ideal target for RV follow-up. It is so well-behaved that
Dumusque et al. (2014) determined the masses of Kepler-10b and c to excellent
precision without the use of any sophisticated activity model—my Bayesian model
comparison ruled out the use of a Gaussian process over a simple white noise term
by a factor of 1016!

I can still learn valuable lessons from such a system. In this section, I show that
my Gaussian process model leaves the planet orbits untouched, allowing me to make
an honest determination of their masses.

4.3.1 History of the System

A fewmonths after the discovery ofCoRoT-7b, theKepler team announced the detec-
tion of several more transiting super-Earths (Borucki et al. 2011). Amongst them,
Kepler-10b was the smallest transiting planet yet discovered (Batalha et al. 2011),
with a radius of just 1.4 R⊕. A second planet candidate with an orbital period of about
45 days was also identified, but was not validated by BLENDER (Torres et al. 2011)
as scenarios of false positive detections remained too likely with the data available
at the time. Follow-up RV observations of Kepler-10 with Keck/HIRES were carried
out in order to determine the mass of Kepler-10b (Batalha et al. 2011). Only 40 mea-
surements were obtained, spread over just under a year. These observations yielded
a mass with a precision of less than 3-sigma (see Table4.5) for Kepler-10b. The orbit
of Kepler-10c was not detected in the RV measurements, which meant it was only
possible to place an upper limit to the mass of this potential additional planetary
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companion. Further transit observations were later acquired with the Spitzer Space
Telescope, allowing Fressin et al. (2011) to perform a new BLENDER analysis and
validate this second candidate as a small Neptune with a 2.2 R⊕ radius.

The discovery of such an exciting planetary system prompted Fogtmann-Schulz
et al. (2014) to carry out an asteroseismic analysis of the star’s physical parameters,
using 29 months of Kepler photometry instead of only the first 5 months of the
mission, as had been done for the discovery paper. The radius,mass and age ofKepler-
10 determined by Fogtmann-Schulz et al. (2014) are listed in Table4.5. Kepler-10
was found to be over 10 Gyr old, which made it the oldest known star to host rocky
planets! This also meant that it should be slowly rotating and magnetically quiet, and
indeed, its Kepler lightcurve, shown in Fig. 4.16, displays almost no variability.
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Table 4.5 Stellar parameters (from Fogtmann-Schulz et al. 2014) and transit parameters of Kepler-
10b and c (from Batalha et al. 2011 and Fressin et al. 2011, respectively), adopted in my analysis

Kepler-10

Mass 0.913 ± 0.022M�
Radius 1.065 ± 0.008 R�
Age 10.50 ± 1.33 Gyr

Projected rotation, v sin i 0.5 ± 0.5 km · s−1

Kepler-10b

Orbital period 0.837495+0.000004
−0.000005 day

Mid-transit time 2454964.57375+0.00060
−0.00082 HJD

Orbital inclination 84.4+1.1
−1.6 deg

Radius 1.416+0.033
−0.036 R⊕

Mass 4.56+1.17
−1.29 M⊕

Kepler-10c

Orbital period 45.29485+0.00065
−0.00076 days

Mid-transit time 2454971.6761+0.0020
−0.0023 HJD

Orbital inclination 89.65+0.09
−0.12 deg

Radius 2.227+0.052
−0.057 R⊕

Fig. 4.15 RV variations of Kepler-10 measured with HARPS-N

4.3.2 Observations

4.3.2.1 HARPS-N Spectroscopy

Kepler-10 seemed like a target of choice for RV follow-up, so the HARPS-N team
decided to observe Kepler-10 twice per night over several months. The results of
this campaign were reported by Dumusque et al. (2014). A few measurements were
discarded from the analysis of Dumusque et al. for the following reasons:
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Fig. 4.16 Upper panel Selected parts of the (binned) Kepler-10 Kepler lightcurve that I used to
compute the autocorrelation period (45 days), with my photometric fit overplotted as the blue curve.
Lower panel Residuals of the fit

• Measurements that had a signal-to-noise ratio (at 550 nm) lower than 10 (this was
the case for 4 observations);

• All stars observed on the night of 18 October 2013 show an RV offset of 10
m · s−1 or more, so we removed the 2 observations taken on this night;

• The original HARPS-N CCD suffered a partial failure in September 2012, and
was operated using only the red half of the CCD until a replacement chip was
procured and installed in November 2012. We took measurements with only half
of the chip for a few nights until the CCD was replaced. This means that the RVs
were derived with fewer (and different) spectral lines, so we decided to discard
the 5 observations concerned.

This left us with 148 observations, shown in Fig. 4.15. The data are available in
Dumusque et al. (2014).

4.3.2.2 Kepler photometry

The Kepler spacecraft observed Kepler-10 with a 1-minute cadence up to Quarter
14 of the mission (Fogtmann-Schulz et al. 2014). Figure 4.17a shows all the Kepler
quarters, which I concatenated together by fitting a constant for each—this is a rough
procedure but works well (see Chap.2, Sect. 2.3).

Determination of the stellar rotation period I computed the autocorrelation of
the full lightcurve, shown in Fig. 4.17b (see Sect. 2.3.2.2). It yields a rotation period
of 45 days. It is apparent, however, that the beginning and end of several quarters
display unexpected wiggles that look more like instrument systematics than stellar
activity; they are likely to affect our estimate of the rotation period. We (Dumusque

http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_2
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Fig. 4.17 Panel a the full concatenated PDC-MAP Kepler lightcurve, in which instrumental “wig-
gles” are clearly present; panel b its autocorrelation function, which indicates a rotation period at
45 days, but shows little structure otherwise. Compare this plot with other similar ones in Fig. 2.11
of Chap. 2 to see just how quiet Kepler-10 is!

et al.) computed the autocorrelation of single quarters, with the wiggles cut out,
and consistently arrived at periods between 15 and 16 days. This is significantly
different to the 45-day period determined from the concatenated lightcurve. It is also
incompatible with the old age of Kepler-10, which points towards a rotation period
of at least 22 days (Dumusque et al. 2014). The star’s projected rotational velocity
(see Table4.5) is very low and consistent with a period of at least 26 days. Kepler-10
seems to be a case where the PDC-MAP data reduction pipeline erased long-term
periodic signals; as I explained in Sect. 2.3 back in Chap.2, this can unfortunately
happen.

4.3.3 MCMC Analysis

4.3.3.1 RV Model

Since we (Dumusque et al.) were not able to obtain a precise and reliable estimate of
the rotation period of Kepler-10, we could not justify using a Gaussian process with a
quasi-periodic covariance function to account for noise modulated by the rotation of
Kepler-10 in the final paper. Besides, the star is very quiet and the RV observations
we see in Fig. 4.15 display an rms scatter of just over 4 m · s−1, which indicates
that any activity-induced variations will be very small and unlikely to significantly
affect our planetary mass measurements, and that using a Gaussian process would
be excessive (this was confirmed by a Bayesian model comparison which yielded
a Bayes’ factor of 1016 in favour of a white noise term over a Gaussian process).
The MCMC analysis presented in Dumusque et al. (2014) accounts for any such
variations with a constant white noise term, added in quadrature to the error bars,
commonly referred to as a “jitter” term. I did run my code with this model, and the
results are included in Sect. 4.5 of Dumusque et al. (2014). Here, I prefer to show

http://dx.doi.org/10.1007/978-3-319-41273-3_2
http://dx.doi.org/10.1007/978-3-319-41273-3_2
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the results I obtained with a model comprising a Gaussian process. We shall see that
the final mass determinations are compatible with the ones obtained with the model
of Dumusque et al. (2014), which attests that the Gaussian process does not absorb
the original signals of the two planets.

I ran my MCMC code for a model consisting of two Keplerian orbits, two zero
RV offsets in order to account for any changes incurred by the replacement of the
CCD, and aGaussian process tomodel activity-induced signals, governed by a quasi-
periodic covariance function.

As starting points to my MCMC simulation, I adopted the K amplitudes found
by the preliminary analyses done in Sects. 4.3 and 4.4 of Dumusque et al. (2014).
The orbits of the two planets were constrained by applying Gaussian priors on the
orbital period and epochs of transit found by previous photometric analyses, pre-
sented in Table 4.5. The usual priors discussed in Sect. 3.2.4 were applied for all
other parameters.

4.3.3.2 Gaussian Process

Based onmy previous experience of modelling activity-induced RV variations with a
Gaussian process, I assumed a quasi-periodic covariance function. Instead of training
the Gaussian process on the lightcurve to determine the hyperparameters of the
covariance function, I assumed the following hyperparameter values:

• Amplitude: determined via the MCMC procedure that I carried out;
• Recurrence timescale (stellar rotation period): according to the investigations car-
ried out by Dumusque et al. (2014), it is likely to be at least 22 days, and according
to the autocorrelation function of the lightcurve in Fig. 4.17, it is likely to be around
45 days. Looking at the periodogram of the RVs in panel (a) of Fig. 4.18, there
is a peak at 52 days with clear harmonics at P/2, P/3 and P/4 (see red full
and dashed lines). It therefore seems reasonable to assume that this is the stellar
rotation period;

• Evolution timescale: I assumed this to be half the rotation period, i.e. 26 days;
• Smoothing parameter: 0.5.

4.3.4 Results and Discussion

4.3.4.1 Selection of the Best Model

I found that a 2-planet model with fixed circular orbits is preferred over a model
with free eccentricities by a factor of 2047 (according to Jeffreys (1961), a Bayes’
factor over 150 indicates strong evidence). When the eccentricities are let free, I
obtain eb = 0.002 ± 0.002 and ec = 0.002 ± 0.05, which suggests that both orbits

http://dx.doi.org/10.1007/978-3-319-41273-3_3
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Fig. 4.18 Lomb–Scargle periodograms of: a the raw RV observations; b the RV data, from which
the activity RV model has been subtracted; c same as (b), with the RV signal of planet c also
removed; d finally, the RV contribution of planet b is also removed

are compatible with circular orbits. Furthermore, I see no significant difference in
the planet masses or the RV residuals.

4.3.4.2 Best Model

The results for a 2-planet model with forced circular orbits are listed in Table4.6.
The K amplitudes found for both planets in agreement, within 1-sigma, with the
main MCMC analysis presented in Dumusque et al. (2014). The uncertainty on my
mass determination of Kepler-10b is smaller than that of Dumusque et al. (2014),
but in the case of Kepler-10c this goes the other way around.

The Gaussian process framework is more flexible than a white noise term. My
intuition tells me that the Gaussian process will allow me to determine the masses of
planets at different orbital periods with varying levels of uncertainty, depending on
their “temporal proximity”, i.e. their degree of overlap with the frequency structure
of the Gaussian process. If this were the case, the results could be interpreted as
follows:

• The orbital period of Kepler-10b (0.85 day) is very distinct from the frequency
structure of the Gaussian process (52 days and harmonics thereof). The Gaussian



4.3 Kepler-10 105

Table 4.6 Outcome of my model, which consists of a Gaussian process with a quasi-periodic
covariance function, 2 planet orbits with eccentricities fixed to 0 and two zero offsets (to account
for the CCD replacement), compared with the results of the model applied by Dumusque et al.
(2014), in which the Gaussian process is replaced by a white noise term

My model Dumusque et al. (2014)

Kepler-10b

P (days) 0.8374907(2) 0.8374907(2)

t0 (BJD—2450000) 5034.0868(2) 5034.0868(2)

K (m · s−1) 2.37 ± 0.23 2.38 ± 0.34

e 0 (fixed) 0 (fixed)

m (M⊕) 3.31 ± 0.32 3.33 ± 0.49

ρ (g · cm−3) 6.4+1.1
−0.7 5.8 ± 0.8

a (AU) 0.016(1) –

Kepler-10c

P (days) 45.29429(4) 45.29430(4)

t0 (BJD—2450000) 5062.2664(4) 5062.26648(8)

K (m · s−1) 3.09 ± 0.69 3.25 ± 0.36

e 0 (fixed) 0 (fixed)

m (M⊕) 16.2 ± 3.6 17.2 ± 1.9

ρ (g · cm−3) 8.1 ± 1.8 7.1 ± 1.0

a (AU) 0.24(1) –

Additional noise

θ1 (m · s−1) 2.37 ± 0.34 0

σs (m · s−1) 0 2.45+0.23
−0.21

The numbers in brackets represent the uncertainty in the last digit of the value

process is unlikely to interfere with the orbit of Kepler-10b. The model is therefore
able to unambiguously identify this signal, yielding a precise mass determination.

• The orbital period ofKepler-10c, on the other hand, ismuch closer to the recurrence
timescale governing the structure of the Gaussian process (35 days—see the first
two periodograms of Fig. 4.18). In this region of parameter space, it is therefore
more tricky to isolate the orbital signature of the planet. The uncertainty on the
mass determination increases in order to reflect this.

• In comparison, a white noise term would provide a constant level of uncertainty
regardless of the stellar activity and orbital timescales.

It would be of utmost interest to see whether this is indeed the case, and further
investigation is required. I discuss a possible future project to tackle this at the end
of this chapter.

Figure4.19 shows each component of the total RV model. We cannot see the
variations of Kepler-10b very clearly because its orbital period is very short, but
from this plot we can get a sense of the relative amplitudes of the Gaussian process
and the two planets, and see over which timescales each one of them is important.
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Fig. 4.19 Panel aHARPS observations, after subtracting the star’s systemic velocity RV0; Panel b
Gaussian process activity model; Panel c orbit of Kepler-10b; Panel d orbit of Kepler-10c; Panel e
totalmodel (red), overlaid on top of the data (blue points).Panel f residuals obtained after subtracting
the model from the observations. Note that the scale on the y-axis in panels (b), (c) and (d) differ
from the other panels. All RVs are in m · s−1
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Fig. 4.20 Panel a Phase plot of the orbit of planet b (circular model). Panel b Phase plot of the
orbit of planet c (circular model)

Figure4.18 shows the periodogram of the HARPS-N RV data in panel (a), and the
effect of removing each planet orbit one at a time. Removing the activity RV model
in panel (b) reveals the two planets.When the orbit of Kepler-10b is removed in panel
(d), we see that the peak at 0.8 days and its 1-day alias at 4.8 days both disappear.
The RV residuals remaining after subtracting my model from the observations have
an rms scatter of 3 m · s−1, which is about 1 m · s−1 greater than the average size of
the error bars. On the last panel of Fig. 4.13, however, we can see that the majority
of the residuals are close to zero, while a few isolated points are very far off (they
also have larger error bars). This additional 1 m · s−1 is therefore likely to be caused
by these few outliers. As shown in panel (d) of Fig. 4.18, there are no obvious peaks
in the generalised Lomb–Scargle periodogram of the residuals.

I show the phase-folded plots of the two planets in Fig. 4.20.

4.3.5 Summary

Following the discovery of two transiting planets, one of them an Earth-size planet,
the Kepler-10 system was observed intensively with the HARPS-N spectrograph in
order to determine the masses of the planets. Kepler-10 is very old and quiet so
a complex activity model was not required; nevertheless, I wished to test whether
a Gaussian process still works when it is not needed. This system proved to be a
double challenge when it was established that its Kepler lightcurve cannot be trusted
to reveal the magnetic activity frequency structure of the star; this is the case for a
number of lightcurves as cautioned by the Kepler Data Release 21 Notes (refer to
Sect. 2.3). Based on my previous experience and on existing analyses of this system,
I made guesses for the rotation period and lifetime of active regions and went on to
run myMCMC simulation to determine the best-fitting parameters of my RVmodel.

My planet mass determinations are in agreement, within 1-sigma, with those of
Dumusque et al. (2014). The uncertainties found via both methods are different, and
I plan to investigate this further. In any case, this analysis shows that the Gaussian

http://dx.doi.org/10.1007/978-3-319-41273-3_2
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process model does not absorb the planetary signals and provides robust mass deter-
minations.

4.4 Summary and Future Plans

4.4.1 Determining the Bulk Densities
of Transiting Exoplanets

Determining the mass of a transiting planet allows us to infer its bulk density, since
we canmeasure its radius from the transits in the photometry. This gives us an insight
into what the planet is made of, and what its structure might be like. A precision of
at least 10% in mass (and 5% in radius) is required to distinguish rocky planets
with iron cores from planets made mostly of water (Zeng and Sasselov 2013). This
is very challenging, but thanks to Kepler, soon TESS, CHEOPS and PLATO, and
spectrographs such as TNG/HARPS-North and eventually VLT/ESPRESSO, it is
becoming a reality!

If we can obtain this information for a large number of exoplanets it can provide
essential clues on the processes that led to the formation of these planetary systems.

Using the radius found by Bruntt et al. (2010), I find that CoRoT-7b is slightly
denser than the Earth (ρ⊕ = 5.52 g · cm−3), with ρb = 6.61 ± 1.72 g · cm−3 (see
Table4.2). Refer to Barros et al. (2014) for a more detailed discussion of the density
of CoRoT-7b.

Kepler-10 c has a density of 7.1 ± 1.0 g · cm−3 (value of Dumusque et al. 2014),
which indicates that the planet is of rocky composition. Based on current theories of
planet formation, this was an unexpected discovery, and earned Kepler-10c the name
“Godzilla Earth”.

I placed CoRoT-7b, Kepler-10b, Kepler-10c and Kepler-78b on a mass-radius
diagram alongside other exoplanets for which mass and radius have been measured
in Fig. 4.21. According to compositionmodels by Zeng and Sasselov (2013), CoRoT-
7b, Kepler-10c and Kepler-78b along with Kepler-20b all have the density expected
of a rocky planet; we see that they lie along the black “rocky” line of the diagram,
despite displaying a range of radii. Kepler-10b is slightly less dense and its bulk
density is more consistent with a composition of half-rock, half-ice.

4.4.2 Assessing the Reliability of the Gaussian Process
Framework for Exoplanet Mass Determinations

As unveiled in Chap. 3, I have developed a new data analysis tool that can reproduce
the effects of stellar activity in RV observations by using a Gaussian process trained
on the variations in the stars lightcurve.

http://dx.doi.org/10.1007/978-3-319-41273-3_3
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Fig. 4.21 CoRoT-7b, Kepler-10b, Kepler-10c and Kepler-78b on a mass-radius diagram. Earth
and Venus are shown as diamond shaped symbols for comparison. Other exoplanets for which the
radius and mass are known are also represented. The solid lines show mass and radius for planets
consisting of (from top to bottom): pure water, 50% water and 50% silicates, pure silicates, 50%
silicates and 50% iron core, and pure iron, according to the theoretical models of Zeng and Sasselov
(2013)

In the present chapter, I reported on applications of my code to three low-mass
planetary systems: CoRoT-7, Kepler-78 and Kepler-10. My Gaussian process frame-
work works well for a variety of magnetic activity levels, and it has the potential
to become a state of the art tool for exoplanet characterisation in future years. In
order to achieve this, my code requires further testing and systematic benchmarking
before it is applied in a more automated way to a large number of planetary systems.
I propose the following project:
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1. Create sets of synthetic RV data and synthetic lightcurves. The synthetic RV
datasets would be a combination of one or more planetary orbits (for planets of
variousmasses, orbital periods and orbital eccentricities) andwhite and red noise,
to reproduce instrumental and astrophysical noise. I would design red noise with
a quasi-periodic behaviour intended to mimic the effects of stellar activity on
RV observations, which are strongly modulated by the stellar rotation period,
and depend on the growth and decay of active regions on the stellar surface.
The synthetic lightcurves would consist of a simple Fourier series with decaying
amplitudes, with white noise.

2. Applymycode to the synthetic datasets. Iwould check the results to see if the code
can detect the fake injected planet signals. As an extension of the investigations I
undertook to assess the existence of CoRoT-7d, I would determine how well the
code performs for each synthetic model and identify configurations for which
the planetary signals are not fully recovered. In particular, I would test whether
my code is capable of detecting planets with orbital periods close to the stellar
rotation period or its harmonics. I could produce a plot showing the detectability
of planets as a function of “temporal proximity”.

3. I could further automatisemycode so that I can then easily run it on a large number
of stars, for example the HARPS-N database, in order to help us determine
the number of observations we need for individual planet systems in order to
determine planet masses with a 3- (or 6-) sigma precision, for a given radius and
assumed composition.

It would also be interesting to carry out rigorous Bayesian model comparison on
the Kepler-78 combined dataset, and possibly for other systems with observations
from different spectrographs to find out whether two separate Gaussian processes
perform better at modelling activity-induced signals as opposed to only one. This
would tell us whether the RV amplitude of variations induced by active regions does
change significantly as a function of wavelength, to the extent that we can detect
these differences with HARPS and HIRES (or other spectrographs).

4.4.3 Concluding Note

The intrinsic variability of the stars themselves remains the main obstacle to deter-
mining the masses of small planets. It is essential that we develop effective and
comprehensive data analysis techniques, and that we establish reliable proxies for
activity-induced RV signals to be able to extract the planetary signals from stellar
variability. In the next chapter, I present the work I have done on the activity-driven
RV variations of the Sun, in the aim to break this barrier.
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Chapter 5
An Exploration into the Radial-Velocity
Variability of the Sun

Thepresence of starspots, faculae andgranulation on the photosphere of a star induces
quasi-periodic signals that can conceal and even mimic the Doppler signature of
orbiting planets. This has resulted in several false detections (see Queloz et al. 2001;
Bonfils et al. 2007; Huélamo et al. 2008; Boisse et al. 2009, 2011; Gregory 2011;
Haywood et al. 2014; Santos et al. 2014; Robertson et al. 2014 and many others).
Understanding the RV signatures of stellar activity, in particular those modulated by
the stellar rotation, is essential to develop the next generation of more sophisticated
activity models and further improve our ability to detect and characterise low-mass
planets.

The Sun is the only star surface can be directly resolved at high resolution, and
therefore constitutes an excellent test case to explore the physical origin of stellar
radial-velocity variability. In this chapter, I present HARPS observations of sunlight
scattered off the bright asteroid 4/Vesta, from which I deduced the Sun’s activity-
driven RV variations. In parallel, the HMI instrument onboard the Solar Dynamics
Observatory provided me with simultaneous high spatial resolution magnetograms,
dopplergrams, and continuum images of the Sun. I determined the RV modulation
arising from the suppression of granular blueshift by magnetically active regions
(sunspots and faculae) and the flux imbalance induced by dark spots. I confirm that
the inhibition of convection is the dominant source of activity-induced RV variations
at play. Finally, I find that the activity-driven RV variations of the Sun are strongly
correlated with its full-disc magnetic flux, which could become a useful proxy for
activity-related RV noise in future exoplanet searches.

This chapter uses material from, and is based on, Haywood et al., 2016, MNRAS, 457, 3637.
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5.1 Previous Studies on the Intrinsic RV Variability
of the Sun

The Sun is a unique test case as it is the only star whose surface can be resolved at
high resolution, therefore allowing me to directly investigate the impact of magnetic
features on RV observations. Early attempts to measure the RV of the integrated
solar disc did not provide quantitative results about the individual activity features
responsible for RV variability. Jiménez et al. (1986) measured integrated sunlight
using a resonant scattering spectrometer and found that the presence of magnetically
active regions on the solar disc led to variations of up to 15 m · s−1. They also
measured the disc-integrated magnetic flux but didn’t find any significant correlation
with RV at the time due to insufficient precision. At about the same time, Deming
et al. (1987) obtained spectra of integrated sunlight with an uncertainty level below
5 m·s−1, enabling them to see the RV signature of supergranulation. The trend they
observed over the 2-year period of their observations was consistent with suppression
of convective blueshift from active regions on the solar surface. A few years later,
Deming and Plymate (1994) confirmed the findings of both Jiménez et al. (1986) and
Deming et al. (1987), only with a greater statistical significance. Not all studies were
in agreement with each other, however; McMillan et al. (1993) recorded spectra of
sunlight scattered off the Moon over a 5-year period and found that any variations
due to solar activity were smaller than 4 m · s−1.

More recently,Molaro and Centurión (2010) obtainedHARPS spectra of the large
and bright asteroid Ceres to construct a wavelength atlas for the Sun. They found
that these spectra of scattered sunlight provide precise disc-integrated solar RVs, and
proposed using asteroid spectra to calibrate high precision spectrographs used for
planet hunting, such as HIRES and HARPS. In parallel, significant discoveries were
made towards a precise quantitative understanding of the RV impact of solar surface
features. Lagrange et al. (2010) andMeunier et al. (2010) used a catalogue of sunspot
numbers and sizes and magnetograms from MDI/SOHO to simulate integrated-Sun
spectra over a full solar cycle and deduce the impact of sunspots and networks of
faculae on RV variations. Flux blocked by sunspots was found to cause variations of
the order of the m · s−1 (Lagrange et al. 2010; Makarov et al. 2009), while facular
suppression of granular blueshift can lead to variations in RV of up to 8–10 m · s−1

(Meunier et al. 2010). In particular, it seems that the suppression of granular blueshift
by active regions plays a dominant role (Meunier et al. 2010; Haywood et al. 2014).

Following the launch of the Solar Dynamics Observatory (SDO, Pesnell et al.
2012) in 2010, continuous observations of the solar surface brightness, velocity and
magnetic fields have become available with image resolution finer than the photo-
spheric granulation pattern. This allows me to probe the RV variations of the Sun in
unprecedented detail. In this chapter, I deduce the activity-driven RV variations of the
Sun based onHARPS observations of the bright asteroid Vesta (Sect. 5.2). In parallel,
I use high spatial resolution continuum, dopplergram andmagnetogram images from
the Helioseismic and Magnetic Imager (HMI/SDO, Schou et al. 2012) to model the
individual RV contributions from sunspots, faculae and granulation (Sect. 5.3). This



5.1 Previous Studies on the Intrinsic RV Variability of the Sun 115

allows me to create a model which I test against the HARPS observations (Sect. 5.4).
Finally, I compute the disc-averaged magnetic flux and show that it is an excellent
proxy for activity-driven RV variations (Sect. 5.5).

5.2 HARPS Observations of Sunlight Scattered Off Vesta

5.2.1 HARPS Spectra

The HARPS spectrograph, mounted on the ESO 3.6m telescope at La Silla was used
to observe sunlight scattered from the bright asteroid 4/Vesta (its average magnitude
during the run was 7.6). Two to three measurements per night were made with
simultaneous Thorium exposures for a total of 98 observations, spread over 37 nights
between 2011 September 29 and December 7. The geometric configuration of the
Sun and Vesta relative to the observer is illustrated in Fig. 5.1. At the time of the
observations, the Sun was just over three years into its 11-year magnetic cycle; the
SDO data confirm that the Sun showed high levels of activity.

The spectra were reprocessed using the HARPS DRS pipeline (Baranne et al.
1996; Lovis and Pepe 2007). Instead of applying a conventional barycentric cor-
rection, the wavelength scale of the calibrated spectra was adjusted to correct for
the doppler shifts due to the relative motion of the Sun and Vesta, and the rela-
tive motion of Vesta and the observer (see Sect. 5.2.3). The FWHM and BIS of the
cross-correlation function and log R′

HK index were also derived by the pipeline. The
median, minimum and maximum signal to noise ratio of the reprocessed HARPS
spectra at central wavelength 556.50nm are 161.3, 56.3 and 257.0, respectively.
Overall, HARPS achieved a precision of 75 ± 25 cm s−1.

Fig. 5.1 Schematic
representation of the Sun,
Vesta and Earth
configuration during the
period of observations (not
to scale)
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I account for the RV modulation induced by Vesta’s rotation in Sect. 5.2.4.1, and
investigate sources of intra-night RV variations in Sect. 5.2.4.2. I selected the SDO
images in such a way as to compensate for the different viewing points of Vesta and
the SDO spacecraft: Vesta was trailing SDO, as shown in Fig. 5.1. This is taken into
account in Sect. 5.2.5.

5.2.2 Solar Rest Frame

The data reduction pipeline for HARPS assumes that the target observed is a distant
point-like star, and returns its RV relative to the solar system barycenter (RVbary).
In order to place the observed RVs of Vesta in the solar rest frame, I perform the
following operation:

RV = RVbary,Earth + vsv + vve, (5.1)

where RVbary,Earth is the barycentric RV of the Earth, i.e. the component of the
observer’s velocity relative to the solar system barycentre, toward the apparent posi-
tion of Vesta. It can be found in the fits header for each observation. The two com-
ponents vsv and vve, retrieved from the JPL horizons database1 correspond to:

• vsv: the velocity of Vesta relative to the Sun at the instant that light received at
Vesta was emitted by the Sun;

• vve: the velocity of Vesta relative to Earth at the instant that light received by
HARPS was emitted at Vesta.

This correction accounts for the RV contribution of all bodies in the solar system and
places the Sun in its rest frame.

5.2.3 Relativistic Doppler Effects

The only relativistic correctionsmade by JPLhorizons are for gravitational bending
of the light and relativistic aberration due to the motion of the observer (Giorgini,
priv. comm.). We therefore must correct for the relativistic doppler shifts incurred
by space-time path curvature between the target and the observer. The wavelength
correction factor to be applied is given by Lindegren and Dravins (2003) as:

λe

λo
=

√
1 − v2

c2

1 + v cos θo
c

, (5.2)

1Solar System Dynamics Group, Horizons On-Line Ephemeris System, 4800 Oak Grove Drive,
Jet Propulsion Laboratory, Pasadena, CA 91109 USA—Information: http://ssd.jpl.nasa.gov/,
Jon.Giorgini@jpl.nasa.gov.

http://ssd.jpl.nasa.gov/
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where λe is the wavelength of the light at emission, λo is the wavelength that is seen
when it reaches the observer, and c is the speed of light. v is the total magnitude
of the velocity vector of the observer relative to the emitter. I apply this correction
twice:

• The light is emitted by the Sun and received atVesta. In this case, v is themagnitude
of the velocity of Vesta with respect to the Sun, and the radial component v cos θo
is equal to vsv (defined in Sect. 5.2.2).

• Scattered sunlight is emitted fromVesta and received at La Silla. v is themagnitude
of the velocity of Vesta with respect to an observer at La Silla, and v cos θo is vve.

For both cases, v and can be obtained from the JPL horizons database. All
velocities are measured at the flux-weighted mid-exposure times of observation
(MJDmid_UTC).

The two wavelength correction factors are then multiplied together in order to
compute the total relativistic correction factor to be applied to the pixel wavelengths
in the HARPS spectra, from which I derive the correct RVs, shown in Fig. 5.2a (see
Appendix table of Haywood et al. 2016).

Fig. 5.2 Panel a HARPS RV variations in the solar rest-frame, corrected for relativistic doppler
effects (but not yet corrected for Vesta’s axial rotation). Panel b HARPS RV variations of the Sun
as-a-star (after removing the RV contribution of Vesta’s axial rotation). Panel c Nightly binned
HARPS RV variations of the Sun as-a-star. All RVs are in ms−1
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5.2.4 Sources of Intra-Night RV Variations

5.2.4.1 Vesta’s Axial Rotation

Vesta rotates every 5.34h (Stephenson 1951), so any significant inhomogeneities in
its shape or surface albedo will induce an RV modulation. Vesta’s shape is close to
a spheroid (Thomas et al. 1997), and Lanza and Molaro (2015) found that the RV
modulation expected from shape inhomogeneities should not exceed 0.060 m s−1.

Stephenson (1951) presented a photometric study of the asteroid, and suggested
that its surface brightness is uneven. He reported brightness variations δm = 0.12
mag. To make a rough estimate of the amplitude of the RVmodulation, I can assume
that the brightness variations are due to a single dark equatorial spot on the surface
of Vesta, blocking a fraction δ f of the flux f . δm and δ f are related as follows:

δm = 2.5 d(ln f )

log(e)
∼ 1.08

δ f

f
, (5.3)

The fractional flux deficit caused by a dark spot can thus be approximated as:

δ f

f
∼ δm/1.08 ∼ 0.11. (5.4)

When the dayside of Vesta is viewed fully illuminated, this spot will give an RV
modulation equal to:

�RVvesta = −δ f

f
veq cos θ sin θ, (5.5)

where θ is the angle between the spot on the asteroid and our line of sight, and
increases from −π/2 to +π/2 as it traverses the visible daylight hemisphere. Due to
foreshortening, the RV contribution is decreased by a factor cos θ. The line-of-sight
velocity varies with sin θ. The asteroid’s equatorial velocity veq is given by:

veq = 2π
Rvesta

Prot
. (5.6)

Using amean radius Rvesta = 262.7 km (Russell et al. 2012) and the rotational period
Prot = 5.34 h, I obtain veq = 85.8 m s−1. The maximum RV amplitude of Vesta’s
rotational modulation, expected at θ = π/4 is thus approximately 4.7 m s−1. The
RV modulation due to surface brightness inhomogeneity should therefore dominate
strongly over shape effects.

I find that this RV contribution is well modelled as a sum of Fourier components
modulated by Vesta’s rotation period:

�RVvesta(t) = C cos(2π − λ(t)) + S sin(2π − λ(t)), (5.7)
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where λ(t) is the apparent planetographic longitude of Vesta at the flux-weighted
mid-times of the HARPS observations and can be retrieved via the JPL horizons
database (the values of λ are given in the Appendix of Haywood et al. 2016).C and S
are scaling parameters, which I determine via an optimal scaling procedure described
in Sect. 5.4. Since the phase-folded lightcurve of Vesta shows a double-humped
structure (Stephenson 1951), I also tested adding further Fourier terms modulated by
the first harmonic of the asteroid’s rotation. The improvement to the fitwas negligible,
so I preferred the simpler model of Eq.5.7.

Figure5.2b shows the RV observations obtained after subtracting Vesta’s rota-
tional signature. The night-to-night scatter has been reduced, even though much of
it remains in the first block of observations; I discuss this in the following section.

5.2.4.2 Solar P-Modes and Granulation

TheRVvariations in the first part of theHARPS run (nights 0 to 11 in Fig. 5.2) contain
some significant scatter, even after accounting for Vesta’s rotation. This intra-night
scatter does not show in the solar FWHM, BIS or log(R′

HK) variations. I investigated
the cause of this phenomenon and excluded changes in colour of the asteroid or
instrumental effects as a potential source of additional noise. Vesta was very bright
(7.6 mag), so I deem the phase and proximity of the Moon unlikely to be responsible
for the additional scatter observed.

Solar p-mode oscillations dominate the Sun’s power spectrum at a timescale of
about 5 min. Most of the RV oscillations induced by p-mode acoustic waves are
therefore averaged outwithin the 15-minuteHARPS exposures. Granulationmotions
result in RV signals of several m s−1, over timescales ranging from about 15 min to
several hours. Taking multiple exposures each night and averaging them together (as
plotted in panel (c) of Fig. 5.2) can help to significantly reduce granulation-induced
RV variations. In addition to this, super-granulation motions commonly take place
over timescales of 8 h or longer, and could potentially result in residual white noise
from one night to the next. Two different observing strategies were implemented
during the HARPS run:

• First part (nights 0–11): 2 to 3 observations were made on each night at ∼2-h
intervals. Within each night, I see scatter with an amplitude of several m s−1

(see panel (b) of Fig. 5.2). I attribute this to granulation motions with a turnover
timescale of 2–3 h, that are not averaged well with this observational strategy.
When I consider the nightly averages (panel (c)), the scatter is considerably
reduced, although some residual noise with an amplitude of ∼3 m s−1 remains.

• Second part (nights 36–68): 3 consecutive exposures were made on each night.
This strategy appears to average out granulation motions very effectively, as little
intra-night scatter remains.

The remaining variations, of order 7–10 m s−1, are modulated by the Sun’s rotation
and are caused by the presence of magnetic surface markers, such as sunspots and
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faculae. These variations are the primary focus of this chapter, and I model them
using SDO/HMI data in Sect. 5.3.

5.2.5 Time Lag Between Vesta and SDO Observations

At the time of the observations, the asteroid Vesta was trailing the SDO spacecraft,
which orbits the Earth (see Fig. 5.1). In order to model the solar hemisphere facing
Vesta at time t , I used SDO images recorded at t + �t , where �t is proportional
to the difference in the Carrington longitudes of the Earth/SDO and Vesta at the
time of the HARPS observation. These longitudes can be retrieved from the JPL
horizons database. The shortest delay, at the start of the observations was ∼ 2.8
days, while at the end of the observations it reached just over 6.5 days (see Appendix
table of Haywood et al. 2016). I cannot account for the evolution of the Sun’s surface
features during this time, andmust assume that they remain frozen in this interval. The
emergence of sunspots can take place over a few days, but in general large magnetic
features (sunspots and networks of faculae) evolve over timescales of weeks rather
than days.

5.3 Pixel Statistics from SDO/HMI Images

In the second part of this analysis I aim to determine the RV contribution from granu-
lation, sunspots and facular regions. I used high-resolution full-disc continuum inten-
sity (6000Å), line-of-sight doppler images and line-of-sight magnetograms from the
HMI instrument (Helioseismic and Magnetic Imager) onboard SDO.2 These were
retrieved for the period spanning the HARPS observations of Vesta at times deter-
mined by the time lags detailed in Sect. 5.2.5. SDO/HMI images the solar disc at a
cadence of 45 sec, with a spatial resolution of 1” using a CCD of 4096×4096 square
pixels. I first converted the SDO/HMI images from pixel coordinates to heliographic
coordinates, i.e. to a coordinate system centered on the Sun. This coordinate system
is fixed with respect to the Sun’s surface and rotates in the sidereal frame once every
25.38 days, which corresponds to a Carrington rotation period (Carrington 1859). A
surface element on the Sun, whose image falls on pixel i j of the instrument detector,
is at position (wi j , ni j , ri j ) relative to the centre of the Sun, where w is westward, n
is northward and r is in the radial direction (see Thompson 2006 for more details on
the coordinate system used). The spacecraft is at position (0, 0, rsc). Thew, n, r com-
ponents of the spacecraft’s position relative to each element i j can thus be written
as:

2HMI data products can be downloaded online via the Joint Science Operations Center website:
http://jsoc.stanford.edu.

http://jsoc.stanford.edu
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δwi j = wi j − 0

δni j = ni j − 0 (5.8)

δri j = ri j − rsc

The spacecraft’s motion and the rotation of the Sun introduce velocity perturbations,
which I determine in Sects. 5.3.1 and 5.3.2, respectively. These two contributions
are then subtracted from each doppler image, thus revealing the Sun’s magnetic
activity velocity signatures. I compute the RV variations due to the suppression
of convective blueshift and the flux blocked by sunspots on the rotating Sun in
Sects. 5.3.5.3 and 5.3.5.4. I show that the Sun’s activity-driven RV variations are
well reproduced by a scaled sum of these two contributions in Sect. 5.4. Finally, I
compute the disc-averaged magnetic flux and compare it as an RV proxy against the
traditional spectroscopic activity indicators in Sect. 5.5.

5.3.1 Spacecraft Motion

The w, n, r components of the velocity incurred by the motion of the spacecraft
relative to the Sun, vsc, are given in the fits header of each SDO/HMI observation.
I normalise vsc to account for variations in the spacecraft’s position relative to the
Sun. The magnitude of the spacecraft’s velocity away from pixel i j can therefore be
expressed as:

vsc,i j = −δwi j vsc,wi j + δni j vsc,ni j + δri j vsc,ri j
di j

, (5.9)

where:
di j =

√
δw2

i j + δn2i j + δr2i j (5.10)

is the distance between pixel i j and the spacecraft. I note that all relative velocities
in this chapter follow the natural sign convention that velocity is rate of change of
distance.

5.3.2 Solar Rotation

The solar rotation as a function of latitude was measured by Snodgrass and Ulrich
(1990) in low resolution full-disc dopplergrams and magnetograms obtained at the
MountWilson 150 foot tower telescope between 1967 and 1987. By cross-correlating
time series of dopplergrams and magnetograms, they were able to determine the rate
of motion of surface features (primarily supergranulation cells and sunspots) and
deduce the rate of rotation of the Sun’s surface as a function of latitude. The solar
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Table 5.1 Solar differential
rotation profile parameters
from Snodgrass and Ulrich
(1990)

Parameter Value (deg day−1)

A 14.713

B –2.396

C –1.787

differential rotation profile ω(φ) at each latitude φ is commonly described by a least
squares polynomial of the form:

ω(φ) = A + B sin2 φ + C sin4 φ. (5.11)

The best fit parameters found by Snodgrass and Ulrich (1990), used in this analysis,
are given in Table5.1. I apply this rotation profile in the heliographic frame to deter-
mine the w, n, r components induced by the solar rotation velocity along the line of
sight to a given image pixel, vrot,w, vrot,n and vrot,r . Normalising again by d, I can
write:

vrot = −δw vrot,w + δn vrot,n + δr vrot,r

d
. (5.12)

5.3.3 Flattened Continuum Intensity

I flatten the continuum intensity images using a fifth order polynomial function Li j

with the limb darkening constants given in Astrophysical Quantities (Allen 1973),
through the IDL subroutine darklimb_correct.pro.3 The flattened and non-flattened
continuum intensities are related via the limb-darkening function L as follows:

Iflat,i j = Ii j
Li j

. (5.13)

5.3.4 Unsigned Longitudinal Magnetic Field Strength

The SDO/HMI instrument measures the line-of-sight (longitudinal) magnetic field
strength Bobs. The magnetic field of the Sun stands radially out of the photosphere
with a strength Br. Due to foreshortening, the observed (longitudinal) field Bobs is
less than the true (radial) field by a factor:

μi j = cos θi j , (5.14)

3Source code available at: http://hesperia.gsfc.nasa.gov/ssw/gen/idl/solar/.

http://hesperia.gsfc.nasa.gov/ssw/gen/idl/solar/


5.3 Pixel Statistics from SDO/HMI Images 123

where θi j is the angle between the outward normal to the feature on the solar surface
and the direction of the line-of-sight of the SDO spacecraft.

I can thus recover the full magnetic field strength by dividing by μi j :

Br,i j = Bobs,i j/μi j . (5.15)

As is routinely done in solar work, I do not apply this operation for pixels that are
very close to the limb (μi j < 0.1) as it would lead me to overestimate the magnetic
field strength.

The noise level in HMI magnetograms is a function of μ (Yeo et al. 2013). It is
lowest for pixels in the centre of the CCD, where it is close to 5G, and increases
towards the edges and reaches 8G at the solar limb. For this analysis I assume that the
noise level is constant throughout the image with a conservative value σBobs,i j = 8G,
in agreement with the results of Yeo et al. (2013). I therefore set Bobs,i j and Br,i j to
0 for all pixels with a longitudinal field measurement (Bobs,i j ) below this value.

5.3.5 Surface Markers of Magnetic Activity

5.3.5.1 Identifying Quiet-Sun Regions, Faculae and Sunspots

The first three panels of Fig. 5.3 show an SDO/HMI flattened intensitygram, line-
of-sight Dopplergram and unsigned radial magnetogram for a set of images taken
on 2011, November 10, after removing the contributions from spacecraft motion
and solar rotation. I identify quiet-Sun regions, faculae and sunspots by applying
magnetic and intensity thresholds.

• Magnetic threshold: The distribution of pixel unsigned observed magnetic field
strength as a function of pixel flattened intensity is shown in Fig. 5.4. In the top
histogram and main panel, we see that the distribution of magnetic field strength
falls off sharply with increasing field strength. The vast majority of pixels are
clustered close to 0G: these pixels are part of the quiet-Sun surface. I separate
active regions from quiet-Sun regions by applying a threshold in unsigned radial
magnetic field strength for each pixel. Yeo et al. (2013) investigated the intensity
contrast between the active and quiet photosphere using SDO/HMI data, and
found an appropriate cutoff at:

|Br,i j | > 3σBobs,i j /μi j , (5.16)

where σBobs,i j represents the magnetic noise level in each pixel (see last paragraph
of Sect. 5.3.4). As in Yeo et al. (2013), I exclude isolated pixels that are above
this threshold as they are likely to be false positives. I can thus write:

|Br,thresh,i j | = 24G /μi j . (5.17)
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Fig. 5.3 First three panels SDO/HMI flattened intensity, line-of sight velocity (km s−1) for the
non-rotating Sun and unsigned longitudinal magnetic flux |Bl|/μ (G) of the Sun, observed on 2011,
November 10 at 00:01:30 UTC. Last panelmy thresholded image, highlighting faculae (blue pixels)
and sunspots (red pixels)

• Intensity threshold: The distribution of line-of-sight velocity as a function of
pixel flattened intensity is shown in Fig. 5.5. The main panel allows us to further
categorise active-region pixels into faculae and sunspots (umbra and penumbra).
I apply the intensity threshold of Yeo et al. (2013):

Ithresh = 0.89 Îquiet, (5.18)

where Îquiet is the mean pixel flattened intensity over quiet-Sun regions. It can
be calculated by summing the flattened intensity of each pixel that has |Br,i j | <

|Br,thresh,i j |:
Îquiet =

∑
i j Iflat,i j Wi j
∑

i j Wi j
, (5.19)
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Fig. 5.4 Pixel line-of-sight (longitudinal)magnetic field strength, |Bobs,i j |, as a function offlattened
intensity Iflat,i j , for the Sun on 2011, November 10 at 00:01:30 UTC. The top and right histograms
show the distributions of |Bobs,i j | and Iflat,i j , respectively. The dashed lines represent the cutoff
criteria selected to define the quiet photosphere, faculae and sunspots. Over 95% of the solar disc
is magnetically quiet

where the weighting factors are defined as:

Wi j = 1 if |Br,i j | > |Br,thresh,i j |,
Wi j = 0 if |Br,i j | < |Br,thresh,i j |. (5.20)

In the main panel of Fig. 5.5, quiet-Sun pixels are plotted in black, while active-
region pixels are overplotted in yellow.

The last panel of Fig. 5.3, which shows the thresholded image according to these
Iflat,i j and |Br,i j | criteria, confirms that they are effective at identifying sunspot and
faculae pixels correctly.
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Fig. 5.5 Pixel line-of-sight velocity, vi j , as a function of flattened intensity Iflat,i j , for the Sun on
2011, November 10 at 00:01:30UTC. The top and right histograms show the distributions of vi j and
Iflat,i j , respectively. In the case of active pixels (yellow dots), the line of sight velocity is invariant
with pixel brightness. For quiet-Sun pixels (black dots), however, brighter pixels are blueshifted
while fainter pixels are redshifted: this effect arises from granular motions

5.3.5.2 Velocity Contribution of Convective Motions in Quiet Sun
Regions

I estimate the average RV of the quiet Sun by summing the intensity-weighted veloc-
ity of non-magnetised pixels, after removing the spacecraft motion and the Sun’s
rotation:

v̂quiet =
∑

i j (vi j − δvsc,i j − δvrot,i j ) Ii j Wi j
∑

i j Ii j Wi j
. (5.21)

For this calculation, I define the weights as follows:

Wi j = 1 if |Br,i j | < |Br,thresh,i j |,
Wi j = 0 if |Br,i j | > |Br,thresh,i j |. (5.22)

This velocity field is thus averaged over the vertical motions of convection granules
on the solar surface. Hot and bright granules rise up to the surface, while cooler
and darker fluid sinks back towards the Sun’s interior. This process is visible in the
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main panel of Fig. 5.5: quiet-Sun pixels (black dots) are clustered in a tilted ellipse.
The area of the upflowing granules is larger than that enclosed in the intergranular
lanes, and the granules are carrying hotter and thus brighter fluid. This results in a
net blueshift, as seen in Fig. 5.5.

5.3.5.3 Suppression of Convective Blueshift from Active Regions

The presence of magnetically active regions inhibits convection and therefore acts
to suppress this blueshift. I measure the total disc-averaged velocity of the Sun v̂ by
summing the velocity contribution of each pixel i j , weighted by their intensity Ii j ,
after subtracting the spacecraft motion and solar rotation:

v̂ =
∑

i j (vi j − δvsc,i j − δvrot,i j ) Ii j
∑

i j Ii j
(5.23)

The suppression of granular blueshift induced by magnetically active regions
(|Br,i j | > |Br,thresh,i j |) is therefore:

�v̂conv = v̂ − v̂quiet. (5.24)

The value of�v̂conv at each time of the HARPS observations is listed in the Appendix
table of Haywood et al. (2016).

5.3.5.4 Rotational Perturbation Due to Sunspot Flux Deficit

As the Sun rotates, the presence of dark spots on the solar surface breaks the
Doppler balance between the approaching (blueshifted) and receding (redshifted)
hemispheres. The resultant velocity perturbation can be obtained by summing the
line-of-sight velocity of sunspot pixels corrected for the spacecraft’s motion, and
weighted by the deficit in flux produced by the presence of a sunspot:

�v̂spots =
∑

i j (vi j − δvsc,i j ) (Ii j − Li j )Wi j
∑

i j Ii j
(5.25)

In this case, the weights are set to 1 only for pixels that fulfill both the magnetic
strength and brightness criteria:

Wi j = 1 if |Br,i j | > |Br,thresh,i j |
and

Iflat,i j < 0.89 Îquiet.

(5.26)
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The value of�v̂spots at each time of theHARPS observations is listed in theAppendix
table of Haywood et al. (2016).

5.4 Reproducing the RV Variations of the Sun

In this section, I combine our model of Vesta’s rotational RV signal (presented
in Sect. 5.2.4.1) with the two magnetic activity basis functions determined in
Sects. 5.3.5.3 and 5.3.5.4, in order to reproduce the RV variations seen in the HARPS
observations.

5.4.1 Total RV Model

The final model has the form:

�RVmodel(t) = A�v̂conv(t) + B �v̂spots(t) + �RVvesta(t) + RV0. (5.27)

I carry out an optimal scaling procedure in order to determine the scaling factors
(A, B,C and S) of each of the contributions, as well as the constant offset RV0. Each
basis function is orthogonalised by subtracting its inverse-variance weighted average
prior to performing the scaling. I determine the maximum likelihood via a procedure
similar to the one described in Collier Cameron et al. (2006). This procedure is
applied to the unbinned (not nightly-averaged) HARPS dataset, in order to determine
the appropriate scaling coefficients (C and S) for Vesta’s axial rotation. The total
amplitude of the modulation induced by Vesta’s rotation is equal to 2.39 m s−1,
which is of the same order as the amplitude I estimated in Sect. 5.2.4.1. After all the
scaling coefficients were determined, I grouped the observations in each night by
computing the inverse variance-weighted average for each night. The final model is
shown in Fig. 5.6, and the best-fit values of the parameters are listed in Table5.2.

Panel (e) shows the residuals remaining after subtracting the totalmodel�RVmodel

from the HARPS observations of the Sun as-a-star �RVSun. The first part of the run
(nights 0–11) displays a residual rms of 3.72 m s−1, while the second part (nights
36–68) has an rms of 1.38m s−1. As Imentioned in Sect. 5.2.4.2, I attribute the excess
scatter in the first nights to 2–3 h granulation signals that were not well-averagedwith
our observing strategy. The observing strategy deployed in the second part of the run
appears to be much more effective at mitigating granulation signals, even though a
few outliers do remain (e.g., at night 52). They may be affected by super-granulation
motions which commonly take place over timescales of 8 h or longer, and which
could result in residual white noise from one night to the next.
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(a)

(b)

(c)

(d)

(e)

Fig. 5.6 Panel a HARPSRVvariations of the Sun as-a-star,�RVSun;Panel b Scaled basis function
for the suppression of convective blueshift,�v̂conv, derived from SDO/HMI images; Panel c Scaled
basis function for the rotational perturbation due to sunspot flux deficit, �v̂rot ; Panel d total RV
model,�RVmodel (red), overlaid on top of theHARPSRVvariations (blue points);Panel e residuals
obtained after subtracting the model from the observations. All RVs are in m s−1. Note that the
scale of the y-axis is different to that used in Fig. 5.2

5.4.2 Relative Importance of Suppression of Convective
Blueshift and Sunspot Flux Deficit

We see that the activity-induced RV variations of the Sun are well reproduced by
a scaled sum of the two basis functions, v̂conv and v̂spots (shown in panels (b) and
(c), respectively). As previously predicted by (Meunier et al. 2010), I find that the
suppression of convective blueshift plays a dominant role (rms of 2.22 m s−1). I also
found this to be the case for CoRoT-7, a main sequence G9 star with a rotation period



130 5 An Exploration into the Radial-Velocity Variability of the Sun

Table 5.2 Best-fit
parameters resulting from the
optimal scaling procedure

Parameter Value

A 0.64 ± 0.29

B 2.09 ± 0.06

C 1.99 ± 0.08

S 1.33 ± 0.09

RV0 (m s−1) 99.80 ± 2.90

comparable to that of the Sun (see Chap.4, Sect. 4.1 and Haywood et al. (2014)). The
relatively low amplitude of the modulation induced by sunspot flux-blocking (rms of
0.14 m s−1) is expected in slowly-rotating stars with a low v sin i (Desort et al. 2007).
As the suppression of convective blueshift by active regions clearly dominates the
total activity-induced RV variations of the Sun, I did not compute the RVmodulation
induced by facular flux-brightening; this contribution would only be a second-order
effect.

5.4.3 Zero Point of HARPS

The wavelength adjustments that were applied to the HARPS RVs were based on
precise prior dynamical knowledge of the rate of change of distance between the
Earth and Vesta, and between Vesta and the Sun. The offset RV0 = 99.80 ± 2.90
m s−1 thus represents the zero point of the HARPS instrument, including the mean
granulation blueshift for the Sun.

5.5 Towards Better Proxies for RV Observations

5.5.1 Disc-Averaged Observed Magnetic Flux |B̂obs|

The averaged magnetic flux may be a useful proxy for activity-driven RV variations
as it should map onto areas of strong magnetic fields, which suppress the Sun’s
convective blueshift. The line-of-sight magnetic flux density and filling factor on
the visible hemisphere of a star can be measured from the Zeeman broadening of
magnetically-sensitive lines (Robinson 1980; Reiners et al. 2013). Their product
gives the disc-averaged flux density that we are deriving from the solar images.

I compute the full-disc line-of-sight magnetic flux of the Sun, by summing the
intensity-weighted line-of-sight unsigned magnetic flux in each pixel:

|B̂obs| =
∑

i j |Bobs,i j | Ii j
∑

i j Ii j
(5.28)

http://dx.doi.org/10.1007/978-3-319-41273-3_4
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Fig. 5.7 Top HARPS RV variations of the Sun as-a-star (m s−1); bottom variations of the disc-
averaged line-of-sight magnetic flux |B̂obs| (G). The two follow each other closely

The variations in |B̂obs| are shown in Fig. 5.7, together with the nightly-averaged
HARPS RV variations of the Sun as-a-star. We see that the variations in the disc-
averaged magnetic flux are in phase with the RV variations, despite the scatter in RV
in the first part of the run (discussed in Sect. 5.2.4.2).

5.5.2 Correlations Between RV and Activity Indicators

Figure5.8 presents the correlations between the nightly-averaged HARPS RV varia-
tions of the Sun as-a-star, the activity basis functions v̂conv and v̂spots and the full-disc
magnetic flux computed from the SDO/HMI images, the observed FWHM, BIS, and
log(R′

HK) derived from the HARPS DRS reduction pipeline. I computed the Spear-
man correlation coefficient to get a measure of the degree of monotone correlation
between each variable (the correlation between two variables is not necessarily lin-
ear, for example between RV and BIS). The coefficients are displayed in each panel
of Fig. 5.8, both including and excluding the observations made in the first part of
the run, which show a lot of intra-night scatter. Although the extra scatter seen in the
first block of observations does affect the trend slightly, it is clear that the activity-
induced RV variations of the Sun are significantly correlated with the disc-averaged
magnetic flux. If I only consider the observations in the second part of the run, the
Spearman correlation coefficient between the RV variations of the Sun as-a-star and
the disc-averaged magnetic flux is equal to 0.83. The correlation is stronger between
|B̂obs| and v̂conv, with a correlation coefficient of 0.89, which is in agreement with the
fact that magnetised areas suppress convective blueshift. The RV variations due to
sunspot flux deficit are not significantly correlated with the disc-averaged magnetic
flux (or with any of the other activity indicators), but this is not so critical since these
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Fig. 5.8 Correlation plots of the nightly-averaged HARPS RV variations of the Sun as-a-star,
suppression of convective blueshift �v̂conv, and modulation due to sunspot flux deficit �v̂spots

against (from left to right): the disc-averaged observed magnetic flux |B̂obs| (G), FWHM (km s−1),
BIS (m s−1) and log(R′

HK). Observations from the first part of the run are highlighted in a lighter
shade. Spearman correlation coefficients are displayed in the bottom-right corner of each panel:
for the full observing run (in bold and black), and for the second part of the run only (in blue)

variations only play a minor role in the total activity-induced RV variations of the
Sun. When compared against correlations with the traditional spectroscopic activity
indicators (the FWHM, BIS and log(R′

HK)), I see that the disc-averaged magnetic
flux |B̂obs| is a much more effective proxy for activity-induced RV variations.

5.6 Summary

In this chapter, I decomposed activity-induced RV variations into identifiable contri-
butions from sunspots, faculae and granulation, based on Sun as-a-star RV variations
deduced fromHARPS spectra of the bright asteroid Vesta and high spatial resolution
images taken with the Helioseismic and Magnetic Imager (HMI) instrument aboard
the SolarDynamicsObservatory (SDO). I find that theRVvariations induced by solar
activity are mainly caused by the suppression of convective blueshift from magnet-
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ically active regions, while the flux deficit incurred by the presence of sunspots on
the rotating solar disc only plays a minor role. I further compute the disc-averaged
line-of-sight magnetic flux and show that it is an excellent proxy for activity-driven
RV variations, much more so than the full width at half-maximum and bisector span
of the cross-correlation profile, and the Ca II H&K activity index.

In addition to the existing 2011 HARPS observations of sunlight scattered off
Vesta, there will soon be a wealth of direct solar RV measurements taken with
HARPS-N, which will be regularly fed sunlight through a small 2-inch telescope
developed specifically for this purpose. A prototype for this is currently being com-
missioned at HARPS-N (Glenday et al., in prep.). Gaining a deeper understanding
of the physics at the heart of activity-driven RV variability will ultimately enable us
to better model and remove this contribution from RV observations, thus revealing
the planetary signals.

In the future, I wish to take this investigation one step further by synthesizing
Sun-as-a-star CCFs, using SDO/HMI continuum and Dopplergram images, which
contain information on the intensity scale and velocity shift of each pixel of the Sun.
This will reveal spectral line profile distortions produced by activity. Comparing
these synthetic line profiles with the observed HARPS CCFs (plotted in Fig. 2.5 of
Chap.2) will provide a unique insight on the physical processes at play in magnetic
RV variability.
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Chapter 6
Conclusion: Next Steps and Aims
for the Future

Thousands of exoplanets have now been found, the majority of which were discov-
ered or confirmed after follow-up with RV observations. Spectrographs such as the
3.6m/HARPS andTNG/HARPS-N are capable ofmeasuringRVs of bright starswith
sub-metre per second precision. The intrinsic variability of the stars themselves, how-
ever, currently remains the main obstacle to determining the masses of small planets.
The presence of magnetic features on the stellar surface, such as starspots, facu-
lae/plage and granulation, can induce quasi-periodic RV variations of over several
metres per second,which can easily conceal the orbits of super-Earths andEarth-mass
planets.

I developed a Monte Carlo Markov Chain code that detects exoplanet orbits in
the presence of stellar activity, which I presented in Chap.3. Activity-induced RV
signals are intimately tied to the star’s rotation period, and their frequency structure is
governed by the constantly-evolving magnetic features on the stellar surface. I mod-
elled the correlated noise arising from the star’s magnetic activity using a Gaussian
process that has the same covariance function, or frequency structure, as the off-
transit variations in the star’s lightcurve. This new activity decorrelation technique
allows me to identify the orbital signatures of planets present in a system and to
determine their masses, with realistic allowance for the uncertainty introduced by
the stellar activity. I implemented state of the art Bayesian model comparison tools
to avoid over-fitting and determine the number of planets present in a system.

I applied my code to several high-precision RV datasets, as reported in Chap.4. I
analysed the simultaneous 3.6m/HARPSRVs and CoRoT photometric time series of
the active star CoRoT-7, host to a transiting super-Earth and a small Neptune, which
has been the subject of much debate in recent years due to its high activity levels. I
also determined the masses of Kepler-10b and c using HARPS-N RV observations,
and of Kepler-78b by combining the HARPS-N and HIRES RV datasets together.

In parallel, I studied the Sun in order to gain a deeper understanding of the
processes at the heart of activity-driven RV signals, as described in Chap.5. The
Sun is the only star for which we can resolve individual surface structures that are
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the source of stellar RV variability. I used high spatial resolution SDO/HMI con-
tinuum, Dopplergram and magnetogram images to determine the RV signatures of
sunspots, faculae/plage and granulation. I also determined the Sun’s total RV varia-
tions over two solar rotations using 3.6m/HARPS observations of sunlight scattered
by the surface of the bright asteroidVesta. I tested these variations against theRVcon-
tribution determined from the SDO/HMI images and found that the activity-driven
RV variations of the Sun are strongly correlated with its full-disc magnetic flux. This
result may become key to disentangling planetary orbits from stellar activity in future
years.

Next Steps

The detection and characterisation of exoplanets is a very dynamic and fast-moving
field. The stellar activity barrier is one of the main challenges faced by the exoplanet
community today, and we must overcome this barrier in order to become able to
routinely detect Earth-mass planets at larger distances from their stars.

I now intend to tackle this issue via a two-fold approach:

• Incorporate activity proxies into my existing framework based on Gaussian
processes and Bayesian model selection;

• Explore the temporal behaviour and physical origin of the magnetic processes at
the heart of stellar RV variability, through the study of Kepler stars and the Sun.

An intuitive and rigorous approach to modelling RV stellar variability Long
term, high precision photometry such as was obtained during the Kepler and CoRoT
missions, is not available for the majority of candidates selected for RV follow-up.
TESSwill only provide uswith around 30 days of photometry, whichwill be too short
to capture fully the activity patterns of stars on their rotation and magnetic activity
timescales. I wish to use Gaussian processes to develop robust activity RV models
based on spectroscopic indicators (the bisector and full width at half maximum of
the cross-correlation function, the R′

HK index) as well as new diagnostics derived
from large-scale MHD simulations of photospheric convection (eg., Cegla et al.
2013). Their frequency structure is similar to that of the intrinsic magnetic activity
of the host star, and can be encoded within the covariance function of a Gaussian
process. Furthermore, stellar activity signals are quasi-periodic in nature, whereas
planet orbits are fully periodic. The Gaussian process framework provides a means
to identify a truly coherent and periodic signal, when implemented in parallel with
a robust model comparison tool. I wish to test my models in a systematic way using
synthetic datasets to assess the detectability of planets in the presence of stellar
activity. This will help to identify the most promising targets for RV follow-up
of Kepler and K2 candidates, and to devise observing strategies that will further
minimise the impact of stellar activity, in readiness for the TESS, CHEOPS and
JWST missions.

Deciphering magnetic activity patterns on the stellar rotation timescale As well
as exploring individual systems, I wish to undertake a large-scale study of the activity
patterns of Sun-like stars to look for relations between their photometric and RV
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variability, over stellar rotation timescales (as a continuation of thework I presented in
Chap.2, Sect. 2.3). The Fourier components of the lightcurve provide important clues
about the complexity of the activity-induced RV variations (Bastien et al. 2014). In
this perspective, decoding the temporal structure of a star’s lightcurve is a natural step
towards understanding stellar RVvariability. I wish to find outwhether certain groups
of stars (eg., for a given spectral type, or age) display a distinct kind of magnetic
activity behaviour. It is already known that young stars tend to show spot-dominated
photometric variability, whereas old stars are faculae-dominated (Radick et al. 1983,
1987, 1995; Lockwood et al. 2007). I wish to explore the dependancy of spectral
type on the links between the photometric rms, rotation period and shape of the
autocorrelation function of the lightcurve in main-sequence stars (spanning the late
F to early M spectral classes). These parameters can be easily obtained from Kepler
light curves by applying autocorrelation and Lomb-Scargle periodogram techniques,
which I have already implemented (see Chap. 2, Sects. 2.3.2.1 and 2.3.2.2). Studying
the lifetimes and sizes of starspot regions may also allow me to identify different
types of magnetic activity behaviour. Classifying stars depending on their activity
behaviour will allow the exoplanet community to develop better tailored models to
account for RV variability, and may also help to pick more “manageable” stars in
future RV surveys. This work will also enhance our understanding of stellar surface
details, magnetic fields, and how they vary with mass and age/rotation.

Probing the physics at the heart of the sun’s RV variability I plan to pursue my
current study of the Sun to develop the next generation of more sophisticated activity
models. In addition to the existing 2012 HARPS observations of sunlight reflected
off Vesta, there will soon be a wealth of direct solar RV measurements taken with
HARPS-N,whichwill be regularly fed sunlight through a small 2-in. telescope devel-
oped specifically for this purpose (Dumusque et al. 2015; Glenday et al. in prep.). A
prototype for this is currently being commissioned at HARPS-N. In particular, I wish
to explore the effect of faculae on the suppression of convective blueshift, since this
process has been found to be the dominant contribution to the activity-induced RV
signal (Meunier et al. 2010a, b; Haywood et al. 2014). Other types of photospheric
velocity field may play an important but previously unrecognised role in stellar RV
variability; in particular, Gizon et al. (2010, 2001) report the presence of ∼50 m ·
s−1 inflows towards active regions on the Sun’s surface. Planetary signals are the
same at all wavelengths, whereas stellar activity signals will change according to the
photospheric depth sampled by different line masks of different wavelength ranges
Anglada-Escudé and Butler (2012); Tuomi and Anglada-Escudé (2013). I wish to
explore the physical sources of this phenomenon, and investigate the possibility of
incorporating the information gained from this wavelength dependance intomy code.
Gaining a deeper understanding of the physics at the heart of activity-driven RV vari-
ability will ultimately enable us to better model and remove this contribution from
RV observations, thus revealing the planetary signals.
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